Harold's Counting Cheat Sheet

22 October 2022
(See also Harold's Sets Cheat Sheet)

Counting Rules

Rule	Description	Comments
Cardinality	The cardinality of A is the number of elements in $\text { set } \mathrm{A}=\|A\|$	- if $A=\{(1,2),(3,4),(5,6)\}$, then $\|A\|=3$ - Also denoted $n(A)$ - Cardinality = Counting
Product Rule	Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then, $\left\|A_{1} \times A_{2} \times \cdots \times A_{n}\right\|=\left\|A_{1}\right\| \cdot\left\|A_{2}\right\| \cdot \cdots \cdot\left\|A_{n}\right\|$	- Counts sequences - Think Intersection (\cap)
Sum Rule	Consider n sets, $A_{1}, A_{2}, \ldots, A_{n}$. If the sets are mutually disjoint ($A_{i} \cap A_{j}=\varnothing$ for $i \neq j$), then $\left\|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right\|=\left\|A_{1}\right\|+\left\|A_{2}\right\|+\cdots+\left\|A_{n}\right\|$	- Counts sequences - Think Union (\cup)
Generalized Product Rule	$\begin{gathered} \|S\|=n_{1} \bullet n_{2} \cdot \cdots \cdot n_{k} \\ n!=(n)(n-1)(n-2) \ldots(2)(1) \end{gathered}$	- In selecting an item from a set, if the number of choices at each step is independent, then the number of items in the set is the product of the number of choices in each step.
Bijection Rule	Let S and T be two finite sets. If there is a bijection from S to T, then $\|S\|=\|T\|$	- 1-to-1 Correspondence
k-to-1 Rule	$\|Y\|=\frac{\|X\|}{k}$	- k-to-1 Correspondence

Counting Formulas \& Techniques

Rule	Description	Comments
Factorial	$\begin{aligned} & n! \\ & =n \cdot(n-1) \cdot(n \\ & -2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \end{aligned}$	- The number of permutations of a finite set with n elements is $P(n, n)$
Permutation	$\begin{aligned} & P(n, r)={ }_{n} P_{r}=\frac{n!}{(n-r)!} \\ & =n(n-1) \ldots(n-r+1) \end{aligned}$	- Order matters (,) - r-permutation - Counting sequences - Common application of the generalized product rule - Order can be fixed but arbitrary - Elements cannot be repeated - Use when elements are all different
Grouping	Password length is 18. No character repeats. Must contain: $\mathrm{a}, \mathrm{z}, 1$, and 9 . $P(18,4) \cdot P(36-4,18-4)$	- Combines permutation with product rule
Combination	$\begin{gathered} C(n, r)={ }_{n} C_{r}=\binom{n}{r} \\ =\frac{n!}{r!(n-r)!} \end{gathered}$	- Order does not matter $\{$, $\}$ - Counting subsets - r-combination - n choose r - Counting the r-subsets - Combination = subset - Use when elements are all identical
	Identity: $\binom{n}{n-r}=\binom{n}{r}$	- An equation is called an identity if the equation holds for all values for which the expressions in the equation are well defined.
Counting Subsets	Bijection from: 5-bit strings with exactly 2 1's To: 2 -subsets of $\{1,2,3,4,5\}=$ $\binom{5}{2}=10$	- Binary example - Counting Strings by Counting Subsets
	$\binom{m+n}{m}$	- Counting paths on a grid $\{\mathrm{N}, \mathrm{E}\}$ - Binary example if $m=\# 1 \mathrm{~s} \& \mathrm{n}=\# 0 \mathrm{~s}$

Counting with Discrete Probability

Rule	Formula	Definition
Notation	$\begin{gathered} \mathrm{n}=\text { Intersection or "" and" } \\ \quad \mathrm{U}=\text { Union or "or" } \\ \text { - = Negation or "not" } \end{gathered}$	- "and" implies multiplication. - "or" implies addition. - "not" implies negation.
Independent	If $P(A \mid B)=P(A)$	- The occurrence of one event does not affect the probability of the other event, or vice versa.
Mutually Independent	No sets overlap. Future outcomes are not impacted by previous outcomes.	- Applies to more than two events
Dependent	If $\|A \cap B\| \neq 0$	- The occurrence of one event affects the probability of the other event.
Disjoint ("mutually exclusive")	If $\|A \cap B\|=0$, then $\|\boldsymbol{A} \cap \boldsymbol{B}\|=\|\boldsymbol{A}\|+\|\boldsymbol{B}\|$	- The events can never occur together.
Probability ("likelihood")	$P(E)=\frac{\|E\|}{\|\boldsymbol{S}\|}$	- S = Sample space or entire set - $A, B, E=$ Event or subset $0 \leq P(E) \leq 1$
Addition Rule ("or")	$\begin{gathered} \|\boldsymbol{A} \cup \boldsymbol{B}\| \\ =\|A\|+\|B\|-\|A \cap B\| \end{gathered}$	Inclusion-Exclusion Principle - Let A, B and C be three finite sets, then - If sets overlap, then don't double count - "... in any of the 3 ." - "... divisible by 2,3 ,or 5 ."
	$\begin{gathered} \|\boldsymbol{A} \cup \boldsymbol{B} \cup \boldsymbol{C}\| \\ =\|A\|+\|B\|+\|C\|-\|A \cap B\|-\|B \cap C\|-\|A \cap C\|+\|A \cap B \cap C\| \end{gathered}$	
	$\begin{gathered} \|A \cup B \cup C \cup D\| \\ =\|A\|+\|B\|+\|C\|+\|D\| \\ -\|A \cap B\|-\|A \cap C\|-\|A \cap D\|-\|B \cap C\|-\|B \cap D\|-\|C \cap D\| \\ +\|A \cap B \cap C\|+\|A \cap B \cap D\|+\|A \cap C \cap D\|+\|B \cap C \cap D\| \\ -\|A \cap B \cap C \cap D\| \end{gathered}$	
	if mutually independent / disjoint: $\begin{gathered} \left\|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right\|= \\ \left\|A_{1}\right\|+\left\|A_{2}\right\|+\cdots+\left\|A_{n}\right\| \end{gathered}$	- A collection of sets is mutually disjoint if the intersection of every pair of sets in the collection is empty. - Restatement of the Sum Rule

Multiplication Rule ("and")		
Complement Rule / Subtraction Rule ("not")	$\begin{gathered} \boldsymbol{P}(\boldsymbol{S})=P(E \cup \bar{E}) \\ \|E\|+\|\bar{E}\|=\|S\| \\ \|E\|=\|S\|-\|\bar{E}\| \\ \|\bar{E}\|=\|S\|-\|E\| \\ \|(A \mid B)\|+\|(\bar{A} \mid B)\|=\|A\| \end{gathered}$	- $\mathrm{S}=$ entire set, $\mathrm{E}=$ subset - The complement of event E (denoted \bar{E} or E^{c}) means "not $E^{\prime \prime}$; - It consists of all simple outcomes that are not in E. - "has at least one" so choose \bar{E} as "none"
Union by Compliment	$\begin{gathered} \|S\|-\left\|\overline{E_{1} \cup E_{2} \cup \ldots \cup E_{n}}\right\|= \\ \left\|E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right\| \end{gathered}$	- $S=U=$ Universal set (all) - E.g., $10^{4}-9^{4}$
Conditional Probability ("given that")	$P(A \mid B)=\frac{\|A \cap B\|}{\|B\|}$ if independent / disjoint: $\begin{gathered} P(A \mid B)=\frac{P(A \cap B)}{P(B)}=P(A) \\ \|(A \mid B)\|=\|A\| \\ \|(B \mid A)\|=\|B\| \end{gathered}$	- Means the probability of event A given that event B has already occurred. - Is a rephrasing of the Multiplication Rule. - $P(A \mid B)$ is the proportion of elements in B that are ALSO in A.
Total Probability Rule	$\begin{gathered} P(A)=P\left(A \cap B_{1}\right)+\cdots+P\left(A \cap B_{n}\right) \\ =P\left(B_{1}\right) \cdot P\left(A \mid B_{1}\right)+\cdots+P\left(B_{n}\right) \\ \cdot P\left(A \mid B_{n}\right) \\ P(A)=P(A \cap B)+P(A \cap \bar{B}) \\ =P(A \mid B) \cdot P(B)+P(A \mid \bar{B}) \cdot P(\bar{B}) \end{gathered}$	- To find the probability of event A , partition the sample space into several disjoint events. - A must occur along with one and only one of the disjoint events.
Bayes' Theorem	$\begin{gathered} P(A \mid B)=\frac{\|A \cap B\|}{\|B\|}=\frac{\|(B \mid A)\| \cdot\|A\|}{\|B\|} \\ =\frac{\|(\boldsymbol{B} \mid \boldsymbol{A})\| \cdot\|\boldsymbol{A}\|}{\|(\boldsymbol{B} \mid \boldsymbol{A})\| \cdot\|\boldsymbol{A}\|+\|(\boldsymbol{B} \mid \overline{\boldsymbol{A}})\| \cdot\|\overline{\boldsymbol{A}}\|} \end{gathered}$	- Allows $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ to be calculated from $P(B \mid A)$. - Meaning it allows us to reverse the order of a conditional probability statement, and is the only generally valid method!

Sources:

- SNHU MAT 230 - Discrete Mathematics, zyBooks.

