Harold’s Directed Graphs

Cheat Sheet
22 October 2022
Definitions
Term Definition Example
Vertices An individual element of V is called a vertex. SetV ={ab,c.d, e}
(Nodes) E— ore
SetEC VxV
E ={(ab),(ac),...,(d e)}
Edges A directed edge (u, v) E E, is pictured as an
(Arcs) arrow going from one vertex to another.
A finite set of dots called vertices (or nodes) f"";ﬁ;-’l;-’ff
that are connected by links called edges (or directed (—
arcs). Consists of a pair (V, E). g™
Directed Graph ‘;;‘r:“';‘lﬁ
(Digraph) A sequence of vertices in which there is a __rd:':-e’::;x;{rd 1\ length 4
(directed) edge pointing from each vertex in outdegres 2
the sequence to its successor in the /
sequence, with no repeated edges. Anatomy of a digraph
If-L
Selt-Loop An edge that connects a vertex to itself. _’
(Loop) £
The number of edges pointing into, to, or in —degree(v) =
In-Degree . . .
with v as their terminal vertex. {u|(u,v) € E}
Out-Degree The humber of fad.g(.as., pointing out of, from, out — degree(v) =
or with v as their initial vertex. {u|(v,u) € E}
Walk A sequence of alternating vertices and edges | (v, (vg, V1), V1, (V1,V2), Vg, ..., Uy
that starts and ends with a vertex. (v, V1, V2,..., 1))
Open Walk A walk in which the first and last vertices are (@...2)
not the same.
Closed Walk A walk in which the first and last vertices are (@....a)
the same.
Length I, the number of edges in the walk, path, or I = |E|
cycle.
Trail An open walk in which no edge occurs more (@b, d,cb,a)
than once.
Circuit A closed walk in which no edge occurs more (a.b,a,c,a)
than once.
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A trail in which no vertex occurs more than

Path (a,b,c,d)
once.
A circuit of length at least 1 in which no

Cycle vertex occurs more than once, except the {a,b,c,a)
first and last vertices which are the same.
A directed acyclic graph (or DAG) is a

DAG . | acyclic graph ( ) 0—@
digraph with no directed cycles.

©
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Digraph Theorems

Theorem

Graph Power Theorem (G)

Definition and Examples
Let G be a directed graph.
Let uand v be any two vertices in G.
There is an edge from u to v in GXif and only if there is a walk of
length k from utovin G.

. b a b A b

G* G* ch

Transitive Closure

The union of G* for all k > 1 (denoted G*) represents reachability by
walks of any length in G.

G'=G'UG?U G*U G*... (infinite orup to |V])

G*=G'UG?U G3 U ... U G" (finite with n vertices)
R*=R'UR?UR3U... UR" (finite with n elements)

a b

d c

ct=guctucc® ud?

Procedure to find the
transitive closure of a
relation Ron a set A

Repeat the following step until no pair is added to R:
e If there are three elements x,y, z € Asuch that (x,y) €ER, (y, z) €
R and (x, z) € R, then add (x, z) to R.

PR

- no edge
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Boolean Matrix Operations

Term

Adjacency Matrix

Description

A directed graph G with n vertices that is represented by an n x n

matrix over the set {0, 1}.

Aij = 1if there is an edge from vertex i to vertex j in G, otherwise, A
1

'Y

- a0
B o Y
(= e ]

3

Boolean Matrix
{0, 1}

A matrix whose entries are from the set {0, 1}.
Purpose: Matrix addition and multiplication for square Boolean
matrices are used to compute the transitive closure of a graph.

Dot Product

For Boolean matrices, if the dot product (sum of products) = 1, then
dot product = 1.

Matrix Product
(AB)

The product of two matrices, A and B, is well defined only if the
number of columns in A is equal to the number of rows in B.

Associative, but not commutative.

k* Power of a Matrix
(AY)

A2 =AeA
A3 =A%e4A

Matrix A is the Adjacency

Let G be a directed graph with n vertices and let A be the adjacency
matrix for G. Then for any k = 1, A*is the adjacency matrix of G¥,
where Boolean addition and multiplication are used to compute AX.

There is a walk of length k in G from vertex v to vertex w if and only

Matrix for Graph G if the entry in row v, column w in A¥is 1.
How to read it:
There is a walk of length 3 in G from vertex 1 to vertex 3 if and only if
there is an edge from 1 to 3 in G3. If row 1, column 3 of A%is 0, then
no such walk exists.
. The sum of two matrices A and B is well defined if A and B have the
Ma(t::BS)um same number of rows and the same number of columns.

For Boolean matrices, if the sum > 1, then sum = 1.

Addition and Graph Union

Let G and H be two directed graphs with the same vertex set. Let A
be the adjacency matrix for G and B the adjacency matrix for H. Then
the adjacency matrix for G U H = A + B, where Boolean addition is
used on the entries of matrices A and B.

Transitive Closure of G*

Includes both Boolean multiplication and addition.
G'=G!'UG*UG*U..UG"
A"=A'UA’UA3U..UA"

A* shows every possible walk in G* up to length n.
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Reflexive

Logical Statement

XRx
(x,x) ER
Vx € A (xRx)
Vx € A ((x, x) ER)

Order Properties of Binary Relations with Two Sets

Property

Description
L] iA CR
where ia is the identity relation of
set Aoria={(x, x) | x € A}
e Directed graph: Loop

9

Anti-Reflexive

- (xRx)
Vx € A - (xRx)

e Directed graph: No loops

— Rl
Symmetric xRy = YRx : II; Rt d h: 2
y VX €A VY € A (xRy — YRX) irecte grap : —yvay arrow
(edges come in pairs) or no arrows
e Equivalence
_ e Directed graph: An arrow from x
Anti- (xRy A yRX) = (x =) to y implies that there is no arrow
S tri (x #y) — = (xRy) V - (YRx) from y to x
ymmetric Vx € AVy € A ((XRy AyRx) — (x=vy))
o £
e Fails the vertical line test, so not a
Asymmetric XRy — - (yRx) roper function, f(x)
¥ VX EAVy EAVzEA (xRy — — (yRX)) prop ’
e Directed graph: 1-way arrow
e Re°RCR
e SimilartoS°R
e Directed graph: Two routes from
. (xRy A yRz) — xRz every vertex A to every vertex B,
Transitive Vx Vy Vz ((xRy A yRz) — xRz) 1-hop and 2-hops
VX EAVyEAVzEA((XRy A yRz) — xRz) b
a C
XRy V yRx .
Total -
Vx € AVy € A (xRy V yRx) * Either-or
. xRy — 3z | xRz A zRy . ,
Densit -
Y VX € AVy (xRy) — 3z | xRz A ZRy e A middle-man exists
Binary R1 . R =Relation on set A e Relation on set <set>
R o R = Relation on set C e Binary relation on set <set>
. ia={(x,y) EAxA]|x= - . .
Identity a={boy) | v} e Similar to a diagonal matrix

ia={(x,x) | x € A}

Composition
(SeR)

S°R=(a,c)ES°R«<3b | (a, b) ERand
(b,c) €S
{(a,c)EAxC| IbeEB((a, b) ERand (b,
c) €S)}
aRb and bSc
{(a,c) e AxC | 3b €B (aRb A bSc)}

e The composition of S and R is the
relationSeRfromAto C

e aRband bSc, meaning R:a — R:b
— S:b — S:c, so (R:a, S:c)

e Ring operator
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Partial Orders

Partial Order

Description

A relation R on a set A that is reflexive, transitive,

and anti-symmetric.

A partial order acts like a < operator on the
elements of A.

Additional

aRb=a=x<b
"ais at most b"

The < operator acting on the set of integers is a

6 12
partial order, denoted by (Z, <). The relation is:
Example 1. Reflexive (x < x) C3 1:
2. Anti-symmetric (if x<yandy < xthen x=y). "
3. Transitive (x <y andy <z implies that x < z). XSy
Partially Ordered Set
Poset The domain along with a partial order defined on (A, X)
it is denoted (A, <).
Comparable | Ifx<yory=<x. Example: (Z, <)

Incomparable

Not comparable.
Neither x <y nory < x.

Either they are not connected at all by a path of

line segments or the only paths between x and y
require a change in direction from up to down or
from down to up.

c and f are incomparable.

b
a

: '
.——D

If every two elements in the domain are

Vertex x has out-degree = 0.

Total Order Example: (Z, <)
comparable.
. - . . All leaving th
An element x is a minimal element if thereisno y edges are leaving the
vertex.
. # x such thaty < x.
Minimal
. 29
Vertex x has in-degree = 0.
An element x is a maximal element if there is no All edges are entering the
vertex.
. y # xsuchthatx=<y.
Maximal

(2

Hasse Diagram

Ordered from top to bottom to identify if
comparable.

Incomparable if up then down or vice versa is
needed.

Incomparable if “air gaped”.
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Strict Orders

Term Description Additional
Arelation R on a set A that is transitive and
anti-reflexive. Every strict order is anti-
Strict Order symmetric (assumed). ) zf\Rb =a<b )
aislessthanb
A strict order acts like a < operator on the
elements of A.
The real numbers (R) along with the <
relation is a strict order. The relation is: Examples:
Example 1. Transitive (ifa<bandb<c,thena<c) (R, <)
2. Anti-reflexive (there is no real a such (P(A), ©)
thata<a)
Comparable ) .
. The arrow diagram for a strict
Incomparable Same as a partial order above, except: . .
. order is basically an arrow
Total Order Partial Order: < . .
— . diagram for a partial order
Minimal Strict Order: < .
- without the self-loops.
Maximal

Directed Acyclic Graphs (DAG)

Term Description Additional
Directed Acyclic Graph (DAG) c
A directed graph (digraph) that has no /T\‘
directed cycles or positive length cycles. a d
DAG . . .
Note that since a single vertex is a cycle of
zero length.
o b

Acyclic = No Cycles

. College course prerequisites

Example Useful for representing precedence araph or software module

relationships or constraints.

dependencies.

Theorem: DAGs
and Strict Orders

Let G be a directed graph.
G has no positive length cycles if and only if
G*is a strict order.

If G is a DAG, then G* is a strict
order.
If G*is a strict order, then G is
a DAG.

Topological Sort

If there is an edge (u, v), then u appears
earlier than v.

A topological sort for a DAG G
is also a topological sort for
G*.

Example

One way to construct a topological sort for a DAG G is to:
1) Pick a vertex x with in-degree 0 and remove x from G.
2) Then pick another vertex with in-degree 0 from among the remaining

vertices.

3) Keep selecting vertices until there are no vertices left.
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Equivalence Relations

Equivalence

Description
A relation R is an equivalence relation if R is

Additional
aRb=a~b

Relation reflexive, symmetric, and transitive. "a is equivalent to b"
The domain is the set of all people.
Define relation B such that xBy if person x and person y have the same
birthday. The relation B is:
1. Reflexive since every person has the same birthday as himself/herself.
Example

2. Symmetric because if x has the same birthday as y, then y has the same

birthday as x.

3. Transitive because if x and y share a birthday and y and z share a
birthday, then x and z must also share a birthday.

Equivalence Class

If A'is the domain of an equivalence relation
and a € A, then [a] is defined to be the set of all
X € A such that a ~ x.

The set [a].
aEA—[a]CA

Consider an equivalence relation on a set A. Let

The vertices of the

(D

Theorem: network can be
X,y EA: . .
Structure of . . partitioned into sets of
. e Ifx~ythen [x] =[y] (identical) .
Equivalence o vertices that can all
. e |Ifitis notthe case thatx ~y, then [x] N ) .
Relations ] = 0 letelv disioint communicate with each
y] = @ (completely disjoint) other.
Consider an equivalence relation over a set A.
The set of all distinct equivalence classes Equivalence Relation —
e defines a partition of A. Equivalent Class —
Partition Nl e am . i
The term "distinct" means that if there are two Partition —
equal equivalence classes [a] = [b], the set [a] is Set A
only included once.
Defines partition on A:
{a,b, e}
{d,f}
Example {c}

Pairwise Disjoint

The intersection of any pair of the sets is
empty.
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Strong connectivity is an equivalence relation
on the set of vertices:
1. Reflexive: Every vertex v is strongly
connected to itself.
2. Symmetric: If v is strongly connected to w,
then w is strongly connected to v.
3. Transitive: If v is strongly connected to w
and w is strongly connected to x, then v is
also strongly connected to x.

Strong
Connectivity

Sources:
e SNHU MAT 230 - Discrete Mathematics, zyBooks.
e See also “Harold’s Undirected Graphs and Trees Cheat Sheet”.
e See also pages 9 & 10 of “Harold’s Sets Cheat Sheet” for Relations.
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