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Harold’s Directed Graphs 
Cheat Sheet 
22 October 2022 

 

Definitions 
 

Term Definition Example 
Vertices 
(Nodes) 

An individual element of V is called a vertex. 
Set 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} 

① or ● 

Edges 
(Arcs) 

A directed edge (u, v) ∈ E, is pictured as an 
arrow going from one vertex to another. 

Set E ⊆ V x V 
𝐸 = {(𝑎, 𝑏), (𝑎, 𝑐), . . . , (𝑑, 𝑒)} 

 
 

Directed Graph 
(Digraph) 

A finite set of dots called vertices (or nodes) 
that are connected by links called edges (or 
arcs).  Consists of a pair (V, E). 
 
A sequence of vertices in which there is a 
(directed) edge pointing from each vertex in 
the sequence to its successor in the 
sequence, with no repeated edges. 

 

 
 

Self-Loop 
(Loop) 

An edge that connects a vertex to itself. 

 

 

In-Degree 
The number of edges pointing into, to, or 
with v as their terminal vertex. 

𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 
|{ 𝑢 | (𝑢, 𝑣)  ∈  𝐸 }| 

Out-Degree 
The number of edges pointing out of, from, 
or with v as their initial vertex. 

𝑜𝑢𝑡 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 
|{ 𝑢 | (𝑣, 𝑢)  ∈  𝐸 }| 

Walk 
A sequence of alternating vertices and edges 
that starts and ends with a vertex. 

〈𝑣0, (𝑣0, 𝑣1), 𝑣1, (𝑣1, 𝑣2), 𝑣2, . . . , 𝑣𝑙〉 
〈𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑙〉 

Open Walk 
A walk in which the first and last vertices are 
not the same. 

〈𝑎, . . . , 𝑧〉 

Closed Walk 
A walk in which the first and last vertices are 
the same. 

〈𝑎, . . . , 𝑎〉 

Length 
l, the number of edges in the walk, path, or 
cycle. 

𝐼 = |𝐸| 

Trail 
An open walk in which no edge occurs more 
than once. 

〈𝑎, 𝑏, 𝑐, 𝑑, 𝑐, 𝑏, 𝑎〉 

Circuit 
A closed walk in which no edge occurs more 
than once. 

〈𝑎, 𝑏, 𝑎, 𝑐, 𝑎〉 
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Path 
A trail in which no vertex occurs more than 
once. 

〈𝑎, 𝑏, 𝑐, 𝑑〉 

Cycle 
A circuit of length at least 1 in which no 
vertex occurs more than once, except the 
first and last vertices which are the same. 

〈𝑎, 𝑏, 𝑐, 𝑎〉 

DAG 
A directed acyclic graph (or DAG) is a 
digraph with no directed cycles. 
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Digraph Theorems 
 

Theorem Definition and Examples 

Graph Power Theorem (Gk) 

Let G be a directed graph.  
Let u and v be any two vertices in G.  
There is an edge from u to v in Gk if and only if there is a walk of 
length k from u to v in G. 

 

 
 

Transitive Closure 

The union of Gk for all k ≥ 1 (denoted G+) represents reachability by 
walks of any length in G. 
G+ = G1 U G2 U G3 U G4 … (infinite or up to |V|) 
G+ = G1 U G2 U G3 U … U Gn (finite with n vertices) 
R+ = R1 U R2 U R3 U … U Rn (finite with n elements) 

 

 
 

Procedure to find the 
transitive closure of a 
relation R on a set A 

Repeat the following step until no pair is added to R: 
●  If there are three elements x, y, z ∈ A such that (x, y) ∈ R, (y, z) ∈ 
R and (x, z) ∉ R, then add (x, z) to R. 
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Boolean Matrix Operations 
 

Term Description 

Adjacency Matrix 

A directed graph G with n vertices that is represented by an n × n 
matrix over the set {0, 1}. 
Ai,j = 1 if there is an edge from vertex i to vertex j in G, otherwise, Ai,j 
= 0. 

 
 

Boolean Matrix 
{0, 1} 

A matrix whose entries are from the set {0, 1}. 
Purpose: Matrix addition and multiplication for square Boolean 
matrices are used to compute the transitive closure of a graph. 

Dot Product 
For Boolean matrices, if the dot product (sum of products) ≥ 1, then 
dot product = 1. 

Matrix Product 
(AB) 

The product of two matrices, A and B, is well defined only if the 
number of columns in A is equal to the number of rows in B. 
 
Associative, but not commutative. 

kth Power of a Matrix 
(Ak) 

𝐴2 = 𝐴 • 𝐴 

𝐴3 = 𝐴2 • 𝐴 

Matrix Ak is the Adjacency 
Matrix for Graph Gk 

Let G be a directed graph with n vertices and let A be the adjacency 

matrix for G. Then for any k ≥ 1, Ak is the adjacency matrix of Gk, 

where Boolean addition and multiplication are used to compute Ak. 

 

There is a walk of length k in G from vertex v to vertex w if and only 
if the entry in row v, column w in Ak is 1. 

How to read it: 

There is a walk of length 3 in G from vertex 1 to vertex 3 if and only if 
there is an edge from 1 to 3 in G3. If row 1, column 3 of A3 is 0, then 
no such walk exists. 

Matrix Sum 
(A+B) 

The sum of two matrices A and B is well defined if A and B have the 
same number of rows and the same number of columns. 

For Boolean matrices, if the sum ≥ 1, then sum = 1. 

Addition and Graph Union 

Let G and H be two directed graphs with the same vertex set. Let A 
be the adjacency matrix for G and B the adjacency matrix for H. Then 
the adjacency matrix for G U H = A + B, where Boolean addition is 
used on the entries of matrices A and B. 

Transitive Closure of G+ 

Includes both Boolean multiplication and addition. 

G+ = G1 U G2 U G3 U … U Gn 

A+ = A1 U A2 U A3 U … U An 

A+ shows every possible walk in G+ up to length n. 
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Order Properties of Binary Relations with Two Sets 
 

Property Logical Statement Description 

Reflexive 

xRx 
(x, x) ∈ R 

∀x ∈ A (xRx) 
∀x ∈ A ((x, x) ∈ R) 

• iA ⊆ R  
where iA is the identity relation of 
set A or iA = {(x, x) | x ∈ A} 

• Directed graph: Loop 

 

Anti-Reflexive 
¬ (xRx) 

∀x ∈ A ¬ (xRx) 
• Directed graph: No loops 

Symmetric 
xRy ⟶ yRx 

∀x ∈ A ∀y ∈ A (xRy ⟶ yRx) 

• R = R-1 

• Directed graph: 2-way arrow 
(edges come in pairs) or no arrows 

Anti-
Symmetric 

(xRy ∧ yRx) ⟶ (x = y) 
(x ≠ y) ⟶ ¬ (xRy) ∨ ¬ (yRx) 

∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) ⟶ (x = y)) 

• Equivalence 

• Directed graph: An arrow from x 
to y implies that there is no arrow 
from y to x 

 

Asymmetric 
xRy ⟶ ¬ (yRx) 

∀x ∈ A ∀y ∈ A ∀z ∈ A (xRy ⟶ ¬ (yRx)) 

• Fails the vertical line test, so not a 
proper function, f(x) 

• Directed graph: 1-way arrow 

Transitive 

(xRy ∧ yRz) ⟶ xRz 
∀x ∀y ∀z ((xRy ∧ yRz) ⟶ xRz) 

∀x ∈ A ∀y ∈ A ∀z ∈ A ((xRy ∧ yRz) ⟶ xRz) 

• R ◦ R ⊆ R 

• Similar to S ◦ R 

• Directed graph: Two routes from 
every vertex A to every vertex B, 
1-hop and 2-hops 

 

Total 
xRy ∨ yRx 

∀x ∈ A ∀y ∈ A (xRy ∨ yRx)  
• Either-or 

Density 
xRy ⟶ ∃z | xRz ∧ zRy 

∀x ∈ A ∀y (xRy) ⟶ ∃z | xRz ∧ zRy 
• A middle-man exists 

Binary 
R-1 ◦ R = Relation on set A 
R ◦ R-1 = Relation on set C 

• Relation on set <set> 

• Binary relation on set <set> 

Identity 
iA = {(x, y) ∈ A × A | x = y} 

iA = {(x, x) | x ∈ A} 
• Similar to a diagonal matrix 

Composition 

(S ∘ R) 

S ◦ R = (a, c) ∈ S ◦ R ⟷ ∃b | (a, b) ∈ R and 
(b, c) ∈ S 

{(a, c) ∈ A × C | ∃b ∈ B ((a, b) ∈ R and (b, 
c) ∈ S)} 

aRb and bSc 
{(a, c) ∈ A × C | ∃b ∈ B (aRb ∧ bSc)} 

• The composition of S and R is the 
relation S ◦ R from A to C 

• aRb and bSc, meaning R:a ⟶ R:b 
⟶ S:b ⟶ S:c, so (R:a, S:c) 

• Ring operator 
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Partial Orders 
 

Term Description Additional 

Partial Order 

A relation R on a set A that is reflexive, transitive, 
and anti-symmetric. 
 
A partial order acts like a ≤ operator on the 
elements of A. 

aRb = a ⪯ b 
"a is at most b" 

Example 

The ≤ operator acting on the set of integers is a 
partial order, denoted by (Z, ≤). The relation is: 
1. Reflexive (x ≤ x) 
2. Anti-symmetric (if x ≤ y and y ≤ x then x = y). 
3. Transitive (x ≤ y and y ≤ z implies that x ≤ z).  

Poset 
Partially Ordered Set 
The domain along with a partial order defined on 
it is denoted (A, ⪯). 

(A, ⪯) 

Comparable If x ⪯ y or y ⪯ x. Example: (Z, ≤) 

Incomparable 

Not comparable. 
Neither x ⪯ y nor y ⪯ x. 
 
Either they are not connected at all by a path of 
line segments or the only paths between x and y 
require a change in direction from up to down or 
from down to up. 

c and f are incomparable. 

 
 

Total Order 
If every two elements in the domain are 
comparable. 

Example: (Z, ≤) 

Minimal 

An element x is a minimal element if there is no y 

≠ x such that y ⪯ x. 

 

Vertex x has in-degree = 0. 

All edges are leaving the 
vertex. 

 
 
 

Maximal 

An element x is a maximal element if there is no 

y ≠ x such that x ⪯ y. 

 

Vertex x has out-degree = 0. 

All edges are entering the 
vertex. 

 

Hasse Diagram 

Ordered from top to bottom to identify if 
comparable.   

Incomparable if up then down or vice versa is 
needed. 

Incomparable if “air gaped”. 
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Strict Orders 

Term Description Additional 

Strict Order 

A relation R on a set A that is transitive and 
anti-reflexive.  Every strict order is anti-
symmetric (assumed). 
 
A strict order acts like a < operator on the 
elements of A. 

aRb = a ≺ b 
"a is less than b" 

Example 

The real numbers (R) along with the < 
relation is a strict order.  The relation is: 
1. Transitive (if a < b and b < c, then a < c) 
2. Anti-reflexive (there is no real a such 

that a < a) 

Examples: 
(R, <) 

(P(A), ⊂) 

Comparable 

Same as a partial order above, except: 
Partial Order: ⪯ 
Strict Order: ≺ 

The arrow diagram for a strict 
order is basically an arrow 
diagram for a partial order 
without the self-loops. 

Incomparable 

Total Order 

Minimal 

Maximal 

 

Directed Acyclic Graphs (DAG) 
 

Term Description Additional 

DAG 

Directed Acyclic Graph (DAG) 
 
A directed graph (digraph) that has no 
directed cycles or positive length cycles. 

Note that since a single vertex is a cycle of 
zero length. 

 

Acyclic = No Cycles 
 

Example 
Useful for representing precedence 
relationships or constraints. 

College course prerequisites 
graph or software module 

dependencies. 

Theorem: DAGs 
and Strict Orders 

Let G be a directed graph.  
G has no positive length cycles if and only if 
G+ is a strict order. 

If G is a DAG, then G+ is a strict 
order. 
If G+ is a strict order, then G is 
a DAG. 

Topological Sort 
If there is an edge (u, v), then u appears 
earlier than v. 

A topological sort for a DAG G 
is also a topological sort for 
G+. 

Example 

One way to construct a topological sort for a DAG G is to: 
1)  Pick a vertex x with in-degree 0 and remove x from G.  
2)  Then pick another vertex with in-degree 0 from among the remaining 
vertices.  
3)  Keep selecting vertices until there are no vertices left. 
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Equivalence Relations 
 

Term Description Additional 
Equivalence 

Relation 
A relation R is an equivalence relation if R is 
reflexive, symmetric, and transitive. 

aRb = a ~ b 
"a is equivalent to b" 

Example 

The domain is the set of all people.  
Define relation B such that xBy if person x and person y have the same 
birthday. The relation B is: 
1. Reflexive since every person has the same birthday as himself/herself. 
2. Symmetric because if x has the same birthday as y, then y has the same 

birthday as x. 
3. Transitive because if x and y share a birthday and y and z share a 

birthday, then x and z must also share a birthday. 

Equivalence Class 
If A is the domain of an equivalence relation 
and a ∈ A, then [a] is defined to be the set of all 
x ∈ A such that a ~ x. 

The set [a]. 
a ∈ A ⟶ [a] ⊆ A 

Theorem: 
Structure of 
Equivalence 

Relations 

Consider an equivalence relation on a set A. Let 
x, y ∈ A: 

• If x ~ y then [x] = [y] (identical) 

• If it is not the case that x ~ y, then [x] ∩ 
[y] = ∅ (completely disjoint) 

The vertices of the 
network can be 
partitioned into sets of 
vertices that can all 
communicate with each 
other. 

Partition 

Consider an equivalence relation over a set A.  
The set of all distinct equivalence classes 
defines a partition of A.  
The term "distinct" means that if there are two 
equal equivalence classes [a] = [b], the set [a] is 
only included once. 

Equivalence Relation ⟶ 
Equivalent Class ⟶ 

Partition ⟶  
Set A 

Example 

 

Pairwise Disjoint 
The intersection of any pair of the sets is 
empty. 
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Strong 
Connectivity 

Strong connectivity is an equivalence relation 
on the set of vertices: 
1. Reflexive: Every vertex v is strongly 

connected to itself. 
2. Symmetric: If v is strongly connected to w, 

then w is strongly connected to v. 
3. Transitive: If v is strongly connected to w 

and w is strongly connected to x, then v is 
also strongly connected to x. 

 

 
Sources: 

• SNHU MAT 230 - Discrete Mathematics, zyBooks. 

• See also “Harold’s Undirected Graphs and Trees Cheat Sheet”. 

• See also pages 9 & 10 of “Harold’s Sets Cheat Sheet” for Relations. 

 

https://www.snhu.edu/admission/academic-catalogs/coce-catalog#/courses/4kVhSZLtg

