Harold's Directed Graphs

Cheat Sheet

22 October 2022

Definitions

Term	Definition	Example
Vertices (Nodes)	An individual element of V is called a vertex.	$\text { Set } V=\{a, b, c, d, e\}$ (1) or \bullet
Edges (Arcs)	A directed edge (u, v) $\in E$, is pictured as an arrow going from one vertex to another.	$E=\{(a, b),(a, c), \ldots,(d, e)\}$
Directed Graph (Digraph)	A finite set of dots called vertices (or nodes) that are connected by links called edges (or arcs). Consists of a pair (V, E). A sequence of vertices in which there is a (directed) edge pointing from each vertex in the sequence to its successor in the sequence, with no repeated edges.	
Self-Loop (Loop)	An edge that connects a vertex to itself.	
In-Degree	The number of edges pointing into, to, or with v as their terminal vertex.	$\begin{aligned} & \text { in - degree }(v)= \\ & \|\{u \mid(u, v) \in E\}\| \end{aligned}$
Out-Degree	The number of edges pointing out of, from, or with v as their initial vertex.	$\begin{aligned} & \text { out-degree }(v)= \\ & \|\{u \mid(v, u) \in E\}\| \end{aligned}$
Walk	A sequence of alternating vertices and edges that starts and ends with a vertex.	$\begin{gathered} \left\langle v_{0},\left(v_{0}, v_{1}\right), v_{1},\left(v_{1}, v_{2}\right), v_{2}, \ldots, v_{l}\right. \\ \left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{l}\right\rangle \end{gathered}$
Open Walk	A walk in which the first and last vertices are not the same.	$\langle a, \ldots, z\rangle$
Closed Walk	A walk in which the first and last vertices are the same.	$\langle a, \ldots, a\rangle$
Length	I, the number of edges in the walk, path, or cycle.	$I=\|E\|$
Trail	An open walk in which no edge occurs more than once.	$\langle a, b, c, d, c, b, a\rangle$
Circuit	A closed walk in which no edge occurs more than once.	$\langle a, b, a, c, a\rangle$

Path	A trail in which no vertex occurs more than once.	$\langle a, b, c, d\rangle$		
Cycle	A circuit of length at least 1 in which no vertex occurs more than once, except the first and last vertices which are the same.	$\langle a, b, c, a\rangle$	DAG	A directed acyclic graph (or DAG) is a
:---				
digraph with no directed cycles.	\quad,			

Digraph Theorems

Theorem

Boolean Matrix Operations

Order Properties of Binary Relations with Two Sets

Property	Logical Statement	Description
Reflexive	$\begin{gathered} x R x \\ (x, x) \in R \\ \forall x \in A(x R x) \\ \forall x \in A((x, x) \in R) \end{gathered}$	- $\mathrm{i}_{\mathrm{A}} \subseteq \mathrm{R}$ where i_{A} is the identity relation of set A or $i_{A}=\{(x, x) \mid x \in A\}$ - Directed graph: Loop
Anti-Reflexive	$\begin{aligned} & \neg(x R x) \\ & \forall x \in A \rightharpoondown(x R x) \end{aligned}$	- Directed graph: No loops
Symmetric	$\begin{gathered} x R y \rightarrow y R x \\ \forall x \in A \quad \forall y \in A(x R y \rightarrow y R x) \end{gathered}$	- $R=R^{-1}$ - Directed graph: 2-way arrow (edges come in pairs) or no arrows
AntiSymmetric	$\begin{gathered} (x R y \wedge y R x) \rightarrow(x=y) \\ (x \neq y) \rightarrow \neg(x R y) \vee \neg(y R x) \\ \forall x \in A \forall y \in A((x R y \wedge y R x) \longrightarrow(x=y)) \end{gathered}$	- Equivalence - Directed graph: An arrow from x to y implies that there is no arrow from y to x No:
Asymmetric	$\begin{gathered} x R y \rightarrow-(y R x) \\ \forall x \in A \quad \forall y \in A \forall z \in A(x R y \rightarrow \neg(y R x)) \end{gathered}$	- Fails the vertical line test, so not a proper function, $\mathrm{f}(\mathrm{x})$ - Directed graph: 1-way arrow
Transitive	$\begin{gathered} (x R y \wedge y R z) \rightarrow x R z \\ \forall x \forall y \forall z((x R y \wedge y R z) \rightarrow x R z) \\ \forall x \in A \forall y \in A \forall z \in A((x R y \wedge y R z) \rightarrow x R z) \end{gathered}$	- $R \circ R \subseteq R$ - Similar to $S \circ R$ - Directed graph: Two routes from every vertex A to every vertex B, 1-hop and 2-hops
Total	$\begin{gathered} x R y \vee y R x \\ \forall x \in A \forall y \in A(x R y \vee y R x) \end{gathered}$	- Either-or
Density	$\begin{gathered} x R y \rightarrow \exists z \mid x R z \wedge z R y \\ \forall x \in A \forall y(x R y) \rightarrow \exists z \mid x R z \wedge z R y \end{gathered}$	- A middle-man exists
Binary	$R^{-1} \circ R=$ Relation on set A $R \circ R^{-1}=$ Relation on set C	- Relation on set <set> - Binary relation on set <set>
Identity	$\begin{aligned} \mathrm{i}_{A}= & \{(x, y) \in A \times A \mid x=y\} \\ & i_{A}=\{(x, x) \mid x \in A\} \end{aligned}$	- Similar to a diagonal matrix
$\begin{aligned} & \text { Composition } \\ & (S \circ R) \end{aligned}$	$\begin{gathered} S \circ R=(a, c) \in S \circ R \leftrightarrow \exists b \mid(a, b) \in R \text { and } \\ (b, c) \in S \\ \{(a, c) \in A \times C \mid \exists b \in B((a, b) \in R \text { and }(b, \\ c) \in S)\} \\ a R b \text { and } b S c \\ \{(a, c) \in A \times C \mid \exists b \in B(a R b \wedge b S c)\} \end{gathered}$	- The composition of S and R is the relation $S \circ R$ from A to C - $\quad a R b$ and $b S c$, meaning $R: a \rightarrow R: b$ $\rightarrow \mathrm{S}: b \rightarrow \mathrm{~S}: c$, so ($\mathrm{R}: \mathrm{a}, \mathrm{S}: \mathrm{c}$) - Ring operator

Partial Orders

Term	Description	Additional
Partial Order	A relation R on a set A that is reflexive, transitive, and anti-symmetric. A partial order acts like a soperator on the elements of A.	$\begin{gathered} a R b=a \leq b \\ \text { "a is at most b" } \end{gathered}$
Example	The \leq operator acting on the set of integers is a partial order, denoted by (\mathbf{Z}, \leq). The relation is: 1. Reflexive ($x \leq x$) 2. Anti-symmetric (if $x \leq y$ and $y \leq x$ then $x=y$). 3. Transitive ($x \leq y$ and $y \leq z$ implies that $x \leq z$).	
Poset	Partially Ordered Set The domain along with a partial order defined on it is denoted (A, \leq).	(A, \leq)
Comparable	If $x \leq y$ or $y \leq x$.	Example: (Z, \leq)
Incomparable	Not comparable. Neither $\mathrm{x} \leq \mathrm{y}$ nor $\mathrm{y} \leq \mathrm{x}$. Either they are not connected at all by a path of line segments or the only paths between x and y require a change in direction from up to down or from down to up.	c and f are incomparable.
Total Order	If every two elements in the domain are comparable.	Example: (Z, \leq)
Minimal	An element x is a minimal element if there is no y $\neq \mathrm{x}$ such that $\mathrm{y} \leq \mathrm{x}$. Vertex x has in-degree $=0$.	All edges are leaving the vertex.
Maximal	An element x is a maximal element if there is no $y \neq x$ such that $x \leq y$. Vertex x has out-degree $=0$.	All edges are entering the vertex.
Hasse Diagram	Ordered from top to bottom to identify if comparable. Incomparable if up then down or vice versa is needed. Incomparable if "air gaped".	

Strict Orders

Term	Description	Additional
Strict Order	A relation R on a set A that is transitive and anti-reflexive. Every strict order is antisymmetric (assumed). A strict order acts like a < operator on the elements of A.	$\begin{gathered} a R b=a<b \\ \text { " } a \text { is less than } b " \end{gathered}$
Example	The real numbers (R) along with the < relation is a strict order. The relation is: 1. Transitive (if $a<b$ and $b<c$, then $a<c$) 2. Anti-reflexive (there is no real a such that a < a)	$\begin{aligned} & \text { Examples: } \\ & (R,<) \\ & (P(A), C) \end{aligned}$
Comparable	Same as a partial order above, except: Partial Order: \leq Strict Order: <	The arrow diagram for a strict order is basically an arrow diagram for a partial order without the self-loops.
Incomparable		
Total Order		
Minimal		
Maximal		

Directed Acyclic Graphs (DAG)

Term	Description	Additional
DAG	Directed Acyclic Graph (DAG) A directed graph (digraph) that has no directed cycles or positive length cycles. Note that since a single vertex is a cycle of zero length. Acyclic $=$ No Cycles	
Example	Useful for representing precedence relationships or constraints.	College course prerequisites graph or software module dependencies.
Theorem: DAGs and Strict Orders	Let G be a directed graph. G has no positive length cycles if and only if G^{+}is a strict order.	If G is a DAG, then G^{+}is a strict order. If G^{+}is a strict order, then G is a DAG.
Topological Sort	If there is an edge (u, v), then u appears earlier than v .	A topological sort for a DAG G is also a topological sort for G^{+}.
Example	One way to construct a topological sort for a DAG G is to: 1) Pick a vertex x with in-degree 0 and remove x from G. 2) Then pick another vertex with in-degree 0 from among the remaining vertices. 3) Keep selecting vertices until there are no vertices left.	

Equivalence Relations

Term	Description	Additional
Equivalence Relation	A relation R is an equivalence relation if R is reflexive, symmetric, and transitive.	$a R b=a \sim b$ "a is equivalent to b "
Example	The domain is the set of all people. Define relation B such that $x B y$ if person x and person y have the same birthday. The relation B is: 1. Reflexive since every person has the same birthday as himself/herself. 2. Symmetric because if x has the same birthday as y, then y has the same birthday as x. 3. Transitive because if x and y share a birthday and y and z share a birthday, then x and z must also share a birthday.	
Equivalence Class	If A is the domain of an equivalence relation and $a \in A$, then [a] is defined to be the set of all $x \in A$ such that $a \sim x$.	The set [a]. $a \in A \longrightarrow[a] \subseteq A$
Theorem: Structure of Equivalence Relations	Consider an equivalence relation on a set A. Let $x, y \in A$: - If $x \sim y$ then $[x]=[y]$ (identical) - If it is not the case that $x \sim y$, then $[x] \cap$ $[y]=\varnothing$ (completely disjoint)	The vertices of the network can be partitioned into sets of vertices that can all communicate with each other.
Partition	Consider an equivalence relation over a set A . The set of all distinct equivalence classes defines a partition of A. The term "distinct" means that if there are two equal equivalence classes $[a]=[b]$, the set $[a]$ is only included once.	Equivalence Relation \rightarrow Equivalent Class \rightarrow Partition \rightarrow Set A
Example		Defines partition on A : $\begin{aligned} & \{a, b, e\} \\ & \{d, f\} \\ & \{c\} \end{aligned}$
Pairwise Disjoint	The intersection of any pair of the sets is empty.	

Strong Connectivity	Strong connectivity is an equivalence relation on the set of vertices: 1. Reflexive: Every vertex v is strongly connected to itself. 2. Symmetric: If v is strongly connected to w, then w is strongly connected to v. 3. Transitive: If v is strongly connected to w and w is strongly connected to x, then v is also strongly connected to x .

Sources:

- SNHU MAT 230 - Discrete Mathematics, zyBooks.
- See also "Harold's Undirected Graphs and Trees Cheat Sheet".
- See also pages 9 \& 10 of "Harold's Sets Cheat Sheet" for Relations.

