Harold's Series Convergence Tests Cheat Sheet

24 March 2016

1	2	3
Divergence or n <i>th</i> Term Test	Geometric Series Test	<i>p</i> - Series Test
Series: $\sum_{n=1}^{\infty} a_n$	Series: $\sum_{n=0}^{\infty} ar^n$	Series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$
<u>Condition(s) of Convergence:</u> None. This test cannot be used to show convergence.	$\frac{\text{Condition of Convergence:}}{ r < 1}$	$\frac{\text{Condition of Convergence:}}{p > 1}$
$\frac{\text{Condition(s) of Divergence:}}{\lim_{n \to \infty} a_n \neq 0}$	Sum: $\mathbf{S} = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}$ <u>Condition of Divergence:</u>	$\frac{\text{Condition of Divergence:}}{p \le 1}$
	$ r \ge 1$	
⁴ Alternating Series Test	5 Integral Test	6 Ratio Test
Series: $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$	Series: $\sum_{n=1}^{\infty} a_n$ when $a_n = f(n) > 0$	Series: $\sum_{n=1}^{\infty} a_n$
Condition of Convergence:	and $f(n)$ is continuous positive and	Condition of Convergence:
$\begin{array}{c} 0 < a_{n+1} \leq a_n \\ \lim a_n = 0 \end{array}$	decreasing	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$
or if $\sum_{n=0}^{\infty} a_n $ is convergent	Condition of Convergence: $\int_{a}^{\infty} f(x) dx \text{ converges}$	Condition of Divergence:
Condition of Divergence:		$\lim \left \frac{a_{n+1}}{2} \right > 1$
None. This test cannot be used	Condition of Divergence:	$n \rightarrow \infty \mid a_n \mid$
to show divergence.	$\int_{1}^{\infty} f(x) dx$ diverges	* Test inconclusive if
* Remainder: $ R_n \le a_{n+1}$	* Remainder: $0 < R_N \le \int_N^\infty f(x) dx$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
7	8	9
Root Test	Direct Comparison Test	Limit Comparison Test
	$(a_n, b_n > 0)$	$(\{a_n\}, \{b_n\} > 0)$
Series: $\sum_{n=1}^{\infty} a_n$	\mathbf{O} arriant $\mathbf{\Sigma}^{m}$	\mathbf{O} ariaat $\mathbf{\Sigma}^{m}$
Condition of Convergence:	Series: $\sum_{n=1}^{\infty} a_n$	Series: $\sum_{n=1}^{\infty} a_n$
$\lim_{n \to \infty} \frac{n}{ a } < 1$	Condition of Convergence:	Condition of Convergence:
$\lim_{n\to\infty}\sqrt{ u_n } < 1$	$0 < a_n \leq b_n$	$\lim_{n \to \infty} \frac{a_n}{a_n} = I > 0$
Condition of Divergence:	and $\sum_{n=0}^{\infty} b_n$ is absolutely	$\lim_{n\to\infty} b_n = L \ge 0$
$\frac{1}{ } \frac{1}{ $	convergent	and $\sum_{n=0}^{\infty} b_n$ converges
$\lim_{n\to\infty} \sqrt{ u_n } \ge 1$	Condition of Divorgance:	Condition of Divergence:
* Test inconclusive if	$\frac{0 < h_{\pi} < a_{\pi}}{0}$	
$\lim_{n \to \infty} \frac{n}{ a } = 1$	and $\sum_{n=0}^{\infty} b_n$ diverges	$\lim_{n \to \infty} \frac{1}{b_n} = L > 0$
$\lim_{n \to \infty} \sqrt{ u_n } = 1$		and $\sum_{n=0}^{\infty} b_n$ diverges
10		NOTE: These tests prove
Telescoping Series Test	NOTE:	convergence and divergence, not
	1) May need to reformat with partial	the actual limit L or sum S .
Series: $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$	Traction expansion or log rules. 2) Expand first 5 terms $n=1.2345$	Sequence: $\lim a_n = L$
Condition of Convergence:	3) Cancel duplicates. $I = 1, 2, 3, 4, 5$.	(a a a a)
$\lim_{n \to \infty} a_n = L$	4) Determine limit L by taking the	$(u_n, u_{n+1}, u_{n+2},)$
$n \rightarrow \infty$	limit as $n \to \infty$.	Series: $\sum_{n=1}^{\infty} a_n = \mathbf{S}$
Condition of Divergence: None	5) Sum: $S = a_1 - L$	$(a_n + a_{n+1} + a_{n+2} + \cdots)$

Choosing a Convergence Test for Infinite Series

Courtesy David J. Manuel

