Harold's Sets Cheat Sheet

26 October 2022
Set Definitions

Term	Definition	Examples
Set	A well-defined collection of distinct mathematical objects	$C=\{2,4,5\}$ denotes a set of three numbers: 2,4 , and 5 $D=\{(2,4),(-1,5)\}$ denotes a set of two ordered pairs of numbers
Element	Objects, members	a, 3, (x, y)
Pair	Ordered pair. An element with two members. Order matters.	(x, y)
Tuple	Ordered tuple. A column of three mathematical objects. Order matters.	(a, b, c) or $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
n-Tuple	Ordered n-tuple. \mathbb{Z}^{3} Is the set of all 3-tuples whose entries are integers. Order matters.	$\mathbb{Z}^{3}=\left\{\left[\begin{array}{l} a \\ b \\ c \end{array}\right]: a, b, c \in \mathbb{Z}\right\}$
Set-Builder Notation	Set Uppercase_letter = \{number_type [: or \|]formula \wedge restrictions or conditions\}	$F=\left\{n \in \mathbb{Z}: n^{3} \wedge 1 \leq n \leq 100\right\}$ The set of cubes of the first 100 positive integers.
Roster Notation	A list of the elements enclosed in curly braces with the individual elements separated by commas	$A=\{1,2,3,4,5,6,7,8,9,10\}$

Set-Builder Notation

Set-Builder Notation:

$$
\{x \in \mathbb{R} \mid x \leq 2 \text { or } x>3\}
$$

Number Line:

Interval Notation:

$$
(-\infty, 2] \cup(3,+\infty)
$$

Number Sets

Symbol	Definition	Set Notation	Examples	Equations
\emptyset	Empty or null set	\{\}	$\emptyset \in\{\varnothing\}$	$1=2$
\mathbb{N}	Natural numbers	$\{x \in \mathbb{Z}: x>0\}$	$\begin{gathered} \{1,2,3, \ldots\} \text { or } \\ \{0,1,2,3, \ldots\} \\ \text { (per ISO 80000-2 2-6.1) } \end{gathered}$	$x-3=0$
W	Whole numbers	$\{x \in \mathbb{Z}: x \geq 0\}$	$\{0,1,2,3, \ldots\}$	$\mathrm{n} \geq 0$
\mathbb{P}	Prime numbers	$\begin{gathered} \left\{a, b \in \mathbb{Z}^{+}:(p \backslash a b \rightarrow\right. \\ p \backslash a \vee p \backslash b)\} \end{gathered}$	$\{2,3,5,7,11,13, \ldots\}$	unofficial
\mathbb{Z}	Integers	$\{\mathrm{x}: \mathrm{x}= \pm \mathbb{N} \vee \mathrm{x}=0\}$	$\{\ldots,-3,-2,-1,0,1,2,3,$...\}	$x+7=0$
Q	Rational numbers	$\{p / q: p, q \in \mathbb{Z} \wedge q \neq 0\}$	$\{0,1 / 4,1 / 2,3 / 4,1\}$	$4 x-1=0$
II	Irrational numbers	$\{x \in \mathbb{R}: x \notin \mathbb{Q}\}$	$\{0,1 / 4,1 / 2,3 / 4,1\}$	$4 x-1=0$
A	Algebraic numbers	$\{x \in \mathbb{R}: x=$ root of a one variable polynomial ^ coefficients $\in \mathbb{Q}$ \}	$\{5,-7,1 / 2, \sqrt{2}\}$	$\begin{aligned} & 2 x^{2}+4 x \\ & -7=0 \end{aligned}$
\mathbb{T}	Transcendental numbers	$\{x \in \mathbb{R}: x \notin \mathbb{A}, x \notin \mathbb{Q}\}$	$\left\{\pi, e, e^{\pi}, \sin (x), \log _{b} \mathrm{a}\right\}$	$\mathbb{T}=\mathbb{U}-\mathbb{A}$
\mathbb{R}	Real numbers	\{x: x corresponds to a number on the number line\}	$\{\pi, 3.1415,-1,7 / 8, \sqrt{2}\}$	$x^{2}-2=0$
II	Imaginary numbers	$\begin{gathered} \{\mathrm{b}: \text { bi where } i= \\ \sqrt{-1}\} \end{gathered}$	$\{2 \mathrm{i}, \sqrt{-1}\}$	$x^{2}+1=0$
\mathbb{C}	Complex numbers	$\{\mathrm{a}, \mathrm{b} \in \mathbb{R}: \mathrm{a}+\mathrm{bi}\}$	$\{1+2 i,-3.4 i, 5 / 8\}$	$\begin{aligned} & x^{2}-4 x+5 \\ & =0 \end{aligned}$
\mathbb{U}	Universal set	all possible values in a particular context		
\{0\}	Zero integer	$\{x \in \mathbb{Z}: x=0\}$	\{0\}	$\mathrm{n}=0$
$\mathbb{Z}-\{0\}$	Non-zero integers	$\{\mathrm{x} \in \mathbb{Z}: \mathrm{x} \neq 0\}$	$\{\ldots,-3,-2,-1,1,2,3,$...\}	$\mathrm{n} \neq 0$
\mathbb{Z}^{+}	Positive integers	$\{x \in \mathbb{Z}: x>0\}$	$\{1,2,3, \ldots\}$	$n>0$
\mathbb{Z}^{-}	Negative integers	$\{x \in \mathbb{Z}: x<0\}$	$\{\ldots,-3,-2,-1\}$	$\mathrm{n}<0$
$\mathbb{N} U\{0\}$	Non-negative integers	$\{x \in \mathbb{Z}: x \geq 0\}$	$\{0,1,2,3, \ldots\}$	$\mathrm{n} \geq 0$
$\mathbb{Z}^{-} \cup\{0\}$	Non-positive integers	$\{\mathrm{x} \in \mathbb{Z}: \mathrm{x} \leq 0\}$	$\{\ldots,-3,-2,-1,0\}$	$\mathrm{n} \geq 0$
$\{0\}, \mathbb{R}^{\times}$	Zero real	$\{x \in \mathbb{R}: x=0\}$	\{0.0\}	$\mathrm{x}=0$
$\begin{aligned} & \mathbb{R}-\{0\} \\ & \mathbb{R} \backslash\{0\} \\ & \hline \end{aligned}$	Non-zero real numbers	$\{x \in \mathbb{R}: x \neq 0\}$	\{-0.001, 0.002\}	$x \neq 0$
$\begin{gathered} \mathbb{R}^{+} \\ (0, \infty) \end{gathered}$	Positive real numbers	$\{x \in \mathbb{R}: x>0\}$	$\{0.0001,0.0002, \ldots\}$	$x>0$

| \mathbb{R}^{-}
 $(-\infty, 0)$ | Negative real
 numbers | $\{\mathrm{x} \in \mathbb{R}: \mathrm{x}<0\}$ | $\{\ldots,-0.0002,-0.0001\}$ | $\mathrm{x}<0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(-\infty)$ | Non-negative real
 numbers | $\{\mathrm{x} \in \mathbb{R}: \mathrm{x} \geq 0\}$ | $\{0,0.0001,0.0002, \ldots\}$ | $\mathrm{x} \geq 0$ |
| Non-positive real
 numbers | $\{\mathrm{x} \in \mathbb{R}: \mathrm{x} \leq 0\}$ | $\{\ldots,-0.0002,-0.0001$, | $\mathrm{x} \leq 0$ | |

Set Laws

Law	Union Example	Intersection Example
Idempotent Laws	$\mathrm{A} \cup \mathrm{A}=\mathrm{A}$	$\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
Associative Laws	$(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$	$(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$
Commutative Laws	$\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$	$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
Distributive Laws	$\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$	$\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$
Identity Laws	$\mathrm{A} \cup \emptyset=\mathrm{A}$	$\mathrm{A} \cap \mathbb{U}=\mathrm{A}$
Domination Laws	$\mathrm{A} \cup \mathbb{U}=\mathbb{U}$	$\mathrm{A} \cap \emptyset=\emptyset$
Double Complement Law	$\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$	
Complement Laws	$\mathrm{A} \cup \mathrm{A}^{\mathrm{c}}=\mathbb{U}$	$\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\emptyset$
Complements of \mathbb{U} and \emptyset	$\mathbb{U}^{\mathrm{c}}=\emptyset$	$\emptyset^{\mathrm{c}}=\mathbb{U}$
De Morgan's Laws	$(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$	$(\mathrm{A} \cap \mathrm{B})^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \cup \mathrm{B}^{\mathrm{c}}$
Absorption Laws	$\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$	$\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A}$
Set Difference Law		$\mathrm{A} \backslash \mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}$

Set Properties

Property	Description	Examples
Composition	Objects may be of various types. A set may contain elements of different varieties.	$A=\{2$, strewberry, monkey $\}$
Order	The order in which the elements are listed is unimportant	$A=\{10,6,4,2\}$
Duplicates	Repeating an element does not change the set	$A=\{2,2,4,6,10\}$
Notation	Typically, capital letters will be used as variables denoting sets, and lower case letters will be used for elements in the set	$A=\{a, b\}$
Range	Every set A	$\varnothing \subseteq A \subseteq U$
Empty Set	Set with no members.	\varnothing is a subset of every set.

Set Notation

Term	Definition	Examples
$\begin{array}{r} \} \\ \} \\ \hline \end{array}$	Denotes a set	$A=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
I	'Such that' or 'for which'	$\begin{aligned} & B=\{x \mid x \in \mathbb{N} \text { and } x \leq 5\} \\ & B=\{x: x \in \mathbb{N} \text { and } x \leq 5\} \end{aligned}$
\Rightarrow \equiv	Is equivalent or identical to	$(C \cap E) \Rightarrow(x \in C \wedge x \in E)$
$\begin{gathered} \|\mathrm{A}\| \\ n(A) \end{gathered}$	Cardinality of A, the number of elements in set A	$\text { if } \begin{aligned} A= & \{(1,2),(3,4),(5,6)\}, \\ & \text { then }\|A\|=3 \end{aligned}$
$A=B$	If and only if they have precisely the same elements. A is equal to b.	$\begin{gathered} \text { if } A=\{4,9\} \text { and } B=\left\{n^{2}: n=2 \text { or } n=3\right\}, \\ \text { then } A=B \end{gathered}$
$A \subseteq B$	If and only if every element of A is also an element of B. A is a subset of B.	$\{1,8,1107\} \subseteq \mathbb{N}$
$A \nsubseteq B$	A is not a subset of B. A is not contained in B.	$\{-1,-8,-1107\} \nsubseteq \mathbb{N}$
$A \subset B$	A is a proper subset of B. A is a subset of B that is not equal to B.	$\{1,8,1107\} \subset \mathbb{N}$
$A \not \subset B$	A is not a proper subset of B. A is not contained in B.	$\{-1,-8,-1107\} \not \subset \mathbb{N}$
$\mathrm{B} \supseteq \mathrm{A}$	If and only if every element of A is in B. B is a superset of A.	$\{1,8,1107\} \subseteq \mathbb{N}$
$\begin{aligned} & a \in A \\ & A \in B \\ & a \in A \end{aligned}$	A is a member of, an element of, or in A	$3 / 4 \in \mathbb{Q}$
$\mathrm{a} \notin \mathrm{A}$	A is not a member of A, is not an element of A	$3.14 \notin \mathbb{Z}$
$\begin{aligned} & A \cap B \\ & A \cap B \\ & A \cap B \end{aligned}$	The set containing elements that are in both A and B. $A \cap B$ is the intersection of A and B.	$\begin{aligned} \text { if } A= & \{1,2\} \text { and } B=\{2,3\}, \\ & \text { then } A \cap B=\{2\} \end{aligned}$
$A \cup B$ $A \cup B$ $A \cup B$	The set containing elements that are in either A or B or both. $A \cup B$ is the union of A and B.	if $A=\{1,2\}$ and $B=\{2,3\}$, then $A \cup B=\{1,2,3\}$
$\begin{aligned} & A \backslash B \\ & A-B \end{aligned}$	Set difference. The set containing elements that are in A but not in B. $A \backslash B$ is " A drop B ". $A-B$ is " A difference B ".	$\text { if } \begin{aligned} A= & \{1,2\} \text { and } B=\{2,3\}, \\ & \text { then } A \backslash B=\{1\} \end{aligned}$
$A \oplus B$	Symmetric difference is the set of elements that are a member of exactly one of A and B, but not both	$A \oplus B=(A-B) \cup(B-A)$
$A \cap B=\varnothing$	A and B are disjoint sets. No elements in common.	$A \cap B=\varnothing$
A^{k}	Cartisian product of a set A with itself	$A^{k}=A \times A \times \ldots \times A \mathrm{k}$ times

Logical Form of Set Notation

Set Notation	Logical Statement	Description
A	$\begin{gathered} x \in A \\ \forall x\{x \in A\} \\ \hline \end{gathered}$	- Is an element of
-A	$\begin{gathered} x \notin A \\ \forall x\{x \notin A\} \end{gathered}$	- Is not an element of
$\begin{aligned} A & =B \\ A & =B \end{aligned}$	$\begin{gathered} A \leftrightarrow B \\ \forall x[(x \in A \rightarrow x \in B) \wedge(x \in B \rightarrow x \in A)] \\ A \subseteq B \wedge B \subseteq A \end{gathered}$	- Equal - Equivalence - Iff - def
$\begin{gathered} A \neq B \\ A \neq B \end{gathered}$	$\forall x(x \in A \wedge x \notin B)$	- Not equal
$A \subseteq B$	$\begin{gathered} \forall x(x \in A \rightarrow x \in B) \\ \forall x \in A(x \in B) \\ x \notin A \backslash B \\ \hline \end{gathered}$	- Subset of - $A \cap B=A \rightarrow \mathrm{~A} \subseteq \mathrm{~B}$
A $\ddagger \mathrm{B}$	$\exists x(x \in A \wedge x \notin B)$	- Not a subset of
$A \cap B$	$\forall x(x \in A \wedge x \in B)$	- Intersection
$A \cup B$	$\forall x(x \in A \vee x \in B)$	- Union
A \B	$\forall x(x \in A \wedge x \notin B)$	- Difference - But Not
$\mathrm{A} \oplus \mathrm{B}$	$\forall x\{x \in A-B \vee x \in B-A\}$	- Exactly one
$\mathrm{A} \rightarrow \mathrm{B}$	$\forall x(x \notin A \vee x \in B)$	- If-Then
$A \cap B=\emptyset$	$\begin{aligned} & -\exists x(x \in A \wedge x \in B) \\ & \forall x-(x \in A \wedge x \in B) \\ & \forall x(x \notin A \vee x \notin B) \\ & \forall x(x \in A \rightarrow x \notin B) \end{aligned}$	- A nd B are disjoint, having no elements in common
\mathcal{F}	$\left\{A_{i} \mid i \in l\right\}$	- Family of sets
$x \in \cap \mathcal{F}$	$\begin{gathered} \{x \mid \forall A \in \mathcal{F}(x \in A)\} \\ \{x \mid \forall A(A \in \mathcal{F} \rightarrow x \in A)\} \end{gathered}$	- Intersection of family of sets
$x \in \cup \mathcal{F}$	$\begin{gathered} \{x \mid \exists A \in \mathcal{F}(x \in A)\} \\ \{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\} \end{gathered}$	- Union of family of sets
$\cap \mathcal{F}$	$\begin{gathered} \cap_{i \in I} A_{i}=\left\{x \mid \forall i \in I\left(x \in A_{i}\right)\right\} \\ \cap_{i \in I} A_{i}=A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap \ldots \end{gathered}$	- Intersection of an indexed family of sets
UF	$\begin{gathered} U_{i \in I} A_{i}=\left\{x \mid \exists i \in I\left(x \in A_{i}\right)\right\} \\ U_{i} \in I A_{i}=\{x \in I \mid \exists i \in I A(i, x)\} \\ \cap_{i \in I} A_{i}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup \ldots \end{gathered}$	- Union of an indexed family of sets
$x \in \wp(A)$	$\begin{gathered} x \subseteq A \\ \forall y(y \in x \rightarrow y \in A) \end{gathered}$	- Power Set - All subsets of set A, including \emptyset - $\|P(A)\|=2^{\|A\|}$

Logical Form of Numbers

Definition	Logical Statement	Description
Even	$\begin{aligned} \exists k \in \mathbb{Z}(x=2 k) \\ \operatorname{Set} E=\{2 k: k \in \mathbb{Z}\} \\ 2 \mathbb{Z} \end{aligned}$	- Definition of Even
Odd	$\begin{gathered} \exists k \in \mathbb{Z}(x=2 k+1) \\ \text { Set } O=\{2 k+1: k \in \mathbb{Z}\} \\ \hline \end{gathered}$	- Definition of Odd
Prime	$\forall a, b \in \mathbb{Z}^{+} \mid(p \backslash a b \rightarrow p \backslash a \vee p \backslash b)$	- A positive integer $p>1$ that has no positive integer divisors other than 1 and p itself is prime. - Here \means"is a divisor of"
Not Prime	$\exists \mathrm{a}, \mathrm{b} \in \mathbb{Z}^{+}(\mathrm{ab}=\mathrm{n} \wedge \mathrm{a}<\mathrm{n} \wedge \mathrm{b}<\mathrm{n})$	- a and b are factors of n, so not prime
Divides	$x \mid y \leftrightarrow \exists k \in \mathbb{Z}(y=k x)$	- Divisability - Divides - Divides into - x divides y evenly - $x \mid y$ to mean " x divides y," - $x \nmid y$ means " x does not divide y "
Rational	$r \in \mathbb{R} \exists x, y \in \mathbb{Z}((y \neq 0) \wedge(r=x / y)) \rightarrow r \in \mathbb{Q}$	- Definition of Rational number - A fraction composed of two integers, but no division by 0

Logical Form of Geometry

Definition	Logical Statement	Description
Line	$\begin{gathered} \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=m x+b\} \\ =\{(0, b),(1, m+b),(2,2 m+b), \ldots\} \end{gathered}$	- You can think of the graph of the equation as a picture of its truth set!
Plane	$\mathbb{R} \times \mathbb{R}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}$ and y are real numbers\}	- These are the coordinates of all the points in the plane - $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$
3D Space	$\mathbb{R}^{3}=\{(x, y, z) \mid x, y$ and z are real numbers $\}$	- These are the coordinates of all the points in 3D space - $\mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$
Spacetime	$\mathbb{R}^{4}=\{(x, y, z, t) \mid x, y, z \text { and } t \text { are real }$ numbers\}	- These are the coordinates of all the points in 3D space and 1D time - $\mathbb{R}^{4}=\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Logical Form of Functions

Definiti on	Logical Statement	Description
Function	$\begin{gathered} f: x \rightarrow y \\ \forall x \in \mathrm{X} \exists!y \in \mathrm{Y}((x, y) \in f) \\ f=\{(a, b) \in \mathrm{A} \times \mathrm{B} \mid \mathrm{b}=\mathrm{f}(\mathrm{a})\} \end{gathered}$	- Function - f is a relation from A to B - Example: $f=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R} \times \mathbb{R} \mid \mathrm{y}=\mathrm{x}^{2}\right\}$
Domain	$\begin{gathered} \operatorname{Dom}(f) \\ \mathrm{X} \\ \hline \end{gathered}$	- Domain of f
Range	$\begin{gathered} \operatorname{Ran}(f) \\ \{f(\mathrm{a}) \mid \mathrm{a} \in \mathrm{~A}\} \\ \mathrm{Y} \end{gathered}$	- Range \subseteq co-domain - Co-domain - Image of f (linear algebra term)
Surjection	$f=\forall y \in \mathrm{Y}\{\exists$ at least one $x \in \mathrm{X}$ such that $\begin{gathered} f(x)=y\} \\ \forall y \in \mathrm{Y}, \exists x \in \mathrm{X} \mid(f(x)=y) \\ \operatorname{Ran}(f)=\mathrm{Y} \end{gathered}$	- Onto - Surjective f - Every y is mapped to by at least one x - No orphan y's - e.g., y is dating at least one x
Injection	$\begin{gathered} f=\forall y \in \mathrm{Y}\{\exists \text { at most one } x \in \mathrm{X} \text { such that } \\ f(x)=y\} \\ \neg \exists \mathrm{a}_{1} \in \mathrm{~A} \exists \mathrm{a}_{2} \in \mathrm{~A}\left(f\left(\mathrm{a}_{1}\right)=f\left(\mathrm{a}_{2}\right) \wedge \mathrm{a}_{1} \neq \mathrm{a}_{2}\right) \\ \forall \mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A} \mid\left(f\left(\mathrm{a}_{1}\right)=f\left(\mathrm{a}_{2}\right) \rightarrow \mathrm{a}_{1}=\mathrm{a}_{2}\right) \\ \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \leftrightarrow \mathrm{x}=\mathrm{y} \\ \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y}) \leftrightarrow \mathrm{x} \neq \mathrm{y} \end{gathered}$	- One-to-one - Injective f - For any y there is at most one x - Can have orphan y's - e.g., y is either married or single
Bijection	$f=$ iff $\forall y \in \mathrm{Y}\{\exists$ a unique $x \in \mathrm{X}$ such that $f(x)=y\}$ $f(Y)=y \leftrightarrow f^{-1}(y)=Y$	- Bijective = surjective and injective - One-to-one correspondence - Bijective f - Invertiblef - Iff has a well-defined inverse $\left(f^{-1}\right)$ - Iff both surjective and injective - One-to-one and onto - e.g., Everyone is married to a spouse
Inverse	$\begin{gathered} f^{-1}: B \rightarrow A \\ \forall b \in \mathrm{~B} \exists!\mathrm{a} \in \mathrm{~A}\left((b, a) \in f^{-1}\right) \\ f(g(x))=x \\ \mathrm{f}-1 \circ \mathrm{f}=\mathrm{i}_{\mathrm{A}} \text { and } \mathrm{f} \circ \mathrm{f}^{-1}=\mathrm{i}_{\mathrm{B}} \end{gathered}$	- Inversef
k-to-1 Correspo ndence	Let X and Y be finite sets. The function $f: X \rightarrow Y$ is a k-to-1 correspondence if for every $y \in Y$, there are exactly k different $x \in X$ such that $f(x)=y$.	- Bijection is $\mathrm{k}=1$

Cartesian Product

Set Notation	Logical Statement	Description
$A \times B$		- Cartesian product
$A \times B$	$\{(a, b) \mid a \in A \wedge b \in B\}$	- Cross product
$A \times B$	$\{(a, b) \mid a \in A, b \in B\}$	- Set of all ordered pairs in which the first entry is in A and the second entry is in B

Properties of Cartesian Products

Law	Logical Statement	Description
Distributive	$A \times(B \cap C)=(A \times B) \cap(A \times C)$	- $\times \cap$
	$A \times(B \cup C)=(A \times B) \cup(A \times C)$	- $\times \mathrm{U}$
Commutative	$(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$	- $\times \cap \times$
	$(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$	- $\times U \times$
Domination	$\begin{aligned} & A \times \emptyset=\varnothing \\ & \emptyset \times A=\emptyset \end{aligned}$	- $\times \emptyset$

Relations

Property	iA $_{\text {A }}$	Equivalence $(=)$	Partial Order (Poset)	Total Order (Linear)
Reflexive	\checkmark	\checkmark	\checkmark	
Symmetric	\checkmark	\checkmark		
Anti-Symmetric			\checkmark	\checkmark
Asymmetric				\checkmark
Transitive	\checkmark	\checkmark	\checkmark	\checkmark
Total				
Density		\checkmark		
Binary Relation				

Set Relations (xRy)

Set Notation	Logical Statement	Description
Relation	$\begin{gathered} R \subseteq A \times B \\ \forall x(x \in R \rightarrow x \in A \times B) \\ R=\{(a, b) \in A \times B \mid \text { conditions }\} \\ x R y=(x, y) \in R \\ \text { Example: } D_{r}=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \text { and } y \\ \text { differ by less than } r\} \Rightarrow\|x-y\|<r\} \end{gathered}$	- Relation from A to B - R is a subset of the cross product
Domain	$\begin{gathered} \operatorname{Dom}(R) \\ \{a \in A \mid \exists b \in B((a, b) \in R)\} \\ \operatorname{Dom}(A) \subseteq A \end{gathered}$	- The domain of R is the set containing all the first coordinates of its ordered pairs
Codomain (Target)		- All possible values in the range set - $\operatorname{Ran}(R)$ is a subset of the Target - The set of the possible output values of a function - The definition of a function
Range (Image)	$\begin{gathered} \operatorname{Ran}(R) \\ \{b \in B \mid \exists a \in A((a, b) \in R)\} \\ \operatorname{Ran}(B) \subseteq B \end{gathered}$	- The range of R is the set containing all the second coordinates of its ordered pairs - The actual or most accurate output values of a function - The image of a function
Inverse $\left(R^{-1}\right)$	$\begin{gathered} \{(y, x) \in Y \times X \mid(x, y) \in R\} \\ (y, x) \in R^{-1} \leftrightarrow(x, y) \in R \\ (x, y) \in R^{-1} \rightarrow(x, y) \in R \end{gathered}$	- The inverse of R is the relation R^{-1} from B to A with the order of the coordinates of each pair reversed
Composition $(S \circ R)$	$S \circ R=(a, c) \in S \circ R \leftrightarrow \exists b \mid(a, b) \in R$ $a n d(b, c) \in S$ $\{(a, c) \in A \times C \mid \exists b \in B((a, b) \in R$ and $(b$, $c) \in S)\}$ $a R b$ and $b S c$ $\{(a, c) \in A \times C \mid \exists b \in B(a R b \wedge b S c)\}$	- The composition of S and R is the relation $S \circ R$ from A to C - $\quad \mathrm{aRb}$ and $b S c$, meaning $\mathrm{R}: \mathrm{a} \rightarrow \mathrm{R}: b \rightarrow$ $\mathrm{S}: \mathrm{b} \longrightarrow \mathrm{~S}: \mathrm{c}, \text { so }(\mathrm{R}: \mathrm{a}, \mathrm{~S}: \mathrm{c})$ - Ring operator
Identity (i_{A})	$\begin{gathered} \{(x, y) \in A \times A \mid x=y\} \\ \{(x, x) \mid x \in A\} \end{gathered}$	- Identity relation

Order Properties of Binary Relations with Two Sets

Property	Logical Statement	Description
Reflexive	$\begin{gathered} x R x \\ (x, x) \in R \\ \forall x \in A(x R x) \\ \forall x \in A((x, x) \in R) \end{gathered}$	- $\mathrm{i}_{A} \subseteq \mathrm{R}$ where i_{A} is the identity relation of set A or $i_{A}=\{(x, x) \mid x \in A\}$ - Directed graph: Loop
Anti-Reflexive	$\begin{gathered} \neg(x R x) \\ \forall x \in A \neg(x R x) \end{gathered}$	- Directed graph: No loops
Symmetric	$\begin{gathered} x R y \rightarrow y R x \\ \forall x \in A \forall y \in A(x R y \rightarrow y R x) \end{gathered}$	- $R=R^{-1}$ - Directed graph: 2-way arrow (edges come in pairs) or no arrows
Anti-Symmetric	$\begin{gathered} (x R y \wedge y R x) \rightarrow(x=y) \\ (x \neq y) \rightarrow \neg(x R y) \vee \neg(y R x) \\ \forall x \in A \forall y \in A((x R y \wedge y R x) \longrightarrow(x=y)) \end{gathered}$	- Equivalence - Directed graph: An arrow from x to y implies that there is no arrow from y to x No:
Asymmetric	$\begin{gathered} x R y \rightarrow-(y R x) \\ \forall x \in A \quad \forall y \in A \forall z \in A(x R y \rightarrow \neg(y R x)) \end{gathered}$	- Fails the vertical line test, so not a proper function, $\mathrm{f}(\mathrm{x})$ - Directed graph: 1-way arrow
Transitive	$\begin{gathered} (x R y \wedge y R z) \rightarrow x R z \\ \forall x \forall y \forall z((x R y \wedge y R z) \rightarrow x R z) \\ \forall x \in A \forall y \in A \forall z \in A((x R y \wedge y R z) \rightarrow x R z) \end{gathered}$	- $R \circ R \subseteq R$ - Similar to $S \circ R$ - Directed graph: Two routes from every vertex A to every vertex B, 1-hop and 2-hops
Total	$x R y \vee y R x$ $\forall x \in A \forall y \in A(x R y \vee y R x)$	- Either-or
Density	$x R y \rightarrow \exists z \mid x R z \wedge z R y$ $\forall x \in A \forall y(x R y) \rightarrow \exists z \mid x R z \wedge z R y$	- A middle-man exists
Binary	$\begin{aligned} & R^{-1} \circ R=\text { Relation on set } A \\ & R \circ R^{-1}=\text { Relation on set } C \end{aligned}$	- Relation on set <set> - Binary relation on set <set>
Identity	$\begin{gathered} i_{A}=\{(x, y) \in A \times A \mid x=y\} \\ i_{A}=\{(x, x) \mid x \in A\} \end{gathered}$	- Similar to a diagonal matrix

Mathematical Number Sets \rightarrow Computer Science Data Types

Symbol	Definition	C Data Type	C++ Data Type
\emptyset	empty set, set with no members	void	
\mathbb{N}	natural numbers	enum unsigned unsigned char unsigned short unsigned int unsigned long unsigned long long	
\mathbb{Z}	integers	char short int long long long	
Q	rational numbers	NA	std::ratio<1, 10>
\mathbb{R}	real numbers	float double long double	
II	imaginary numbers	(see complex below) double complex $\mathrm{z1}$; $\mathrm{im}=$ cimag(z1);	(see complex below) std::complex <double> z1; im = std::imag(z1);
C	complex numbers	\#include <complex.h> float complex double complex long double complex	\#include <complex> std::complex<float> std::complex <double> std::complex <long double>

Sources:

- SNHU MAT 470 - Real Analysis, The Real Numbers and Real Analysis, Ethan D. Bloch, Springer New York, 2011.
- See also "Harold's Logic Cheat Sheet" .
- https://www.storyofmathematics.com/set-notation
- https://math24.net/set-identities.html

