### Harold's Undirected Graphs and Trees Cheat Sheet

22 October 2022

#### **Definitions**

| Term                | Definition                                                                           | Example                                                                              |  |
|---------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Vertices            | An individual element of V is called a <u>vertex</u> .                               | $Set V = \{a, b, c, d, e\}$                                                          |  |
| (Nodes)             | A graph is <b>finite</b> if the vertex set is finite.                                | ① or •                                                                               |  |
| Edges<br>(Arcs)     | An <u>edge</u> (u, v) ∈ E, is pictured as an arrow going from one vertex to another. | Set $E \subseteq V \times V$ $E = \{\{a, b\}, \{a, c\}, \dots, \{d, e\}\}$ b $a$ $c$ |  |
| Self-Loop<br>(Loop) | An edge that connects a vertex to itself.                                            |                                                                                      |  |
| Undirected<br>Graph | A graph whose edges are <u>unordered</u> pairs of vertices.                          | a b  undirected edge {a, b}                                                          |  |
| Simple Graph        | A graph with no parallel edges or self-loops.                                        | Cycle  ≥ 3                                                                           |  |
| Adjacent            | There is an edge between two vertices.                                               | Two vertices are connected.                                                          |  |
| Endpoints           | Vertices b and e are the <b>endpoints</b> of edge {b, e}                             | The two vertices of an edge.                                                         |  |
| Incident            | The edge {b, e} is <b>incident</b> to vertices b and e.                              | The edge of two vertices.                                                            |  |
| Neighbor            | A vertex c is a <b>neighbor</b> of vertex b if and only if {b, c} is an edge.        | Has an edge to it.                                                                   |  |
| Degree              | The <b>degree</b> of a vertex is the number of neighbors it has.                     | deg(v)                                                                               |  |
| Total Degree        | The sum of the degrees of all of the vertices.                                       | $\sum_{v \in V} deg(v) = 2 \cdot  E $                                                |  |
| Regular Graph       | All the vertices have the same degree.                                               | $deg(a) = deg(b) = deg(c) \dots$                                                     |  |

|                    |                                                                                                                                                                      | 3-Regular Graph:                                 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| d-Regular<br>Graph | All the vertices have degree d.                                                                                                                                      | 3-regular drapin.                                |
| Subgraph           | A graph $H = (V_H, E_H)$ is a <b>subgraph</b> of a graph $G = (V_G, E_G)$ if $V_H \subseteq V_G$ and $E_H \subseteq E_G$ .<br>Any graph $G$ is a subgraph of itself. | 2-Regular Graph:                                 |
|                    | K <sub>6</sub> : Complete Graph (Clique)  Has an edge between every pair of vertices.                                                                                | C <sub>7</sub> : Cycle                           |
| Common<br>Graphs   | Q <sub>3</sub> : 3-Dimentional Hypercube  111  001  110  Has 2 <sup>n</sup> vertices.                                                                                | K <sub>3,4</sub> :  No edges between vertices in |
|                    | P₅: A path                                                                                                                                                           | the same set. S₅: Star                           |

#### **Graph Representation**



| Theorem: Degree sequence preserved under isomorphism | Degree sequence is preserved under isomorphism.  If two graphs are isomorphic, they have the same degree sequence.                                                                                                                                                                                             |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graph Theory                                         | Concerned with properties of graphs that are preserved under isomorphism.  Preserved:  Number of vertices ( V )  Number of edges ( E )  Degree sequence (degrees listed high to low)  Total degree (2· E )  Not Preserved:  The lowest numbered vertex has degree 3  Every even numbered vertex has odd degree |

# **Graph Types**

| Term        | Description                                                                                                                     | Example                               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Walk        | A sequence of alternating vertices and edges that starts and ends with a vertex.                                                |                                       |
| Open Walk   | A walk in which the first and last vertices are not the same.                                                                   | $\langle a, \ldots, z \rangle$        |
| Closed Walk | A walk in which the first and last vertices are the same.                                                                       | $\langle a, \ldots, a \rangle$        |
| Length      | <i>I</i> , the number of edges in the walk, path, or cycle.                                                                     | l =  E <br>l =  V  - 1 if sequence    |
| Trail       | An <u>open</u> walk in which no <u>edge</u> occurs more than once.                                                              | $\langle a, b, c, d, c, b, a \rangle$ |
| Circuit     | A <u>closed</u> walk in which no <u>edge</u> occurs more than once.                                                             | $\langle a, b, a, c, a \rangle$       |
| Path        | A trail in which no <u>vertex</u> occurs more than once.                                                                        | $\langle a, b, c, d \rangle$          |
| Cycle       | A circuit of length at least 1 in which no vertex occurs more than once, except the first and last vertices which are the same. | ⟨a, b, c, a⟩                          |

| VAZ-III. | No repeated         |      |
|----------|---------------------|------|
| Walk     | Edge Vertex or Edge |      |
| Open     | Trail               | Path |
| Closed   | Circuit Cycle       |      |

# Connectivity

| Term                                                  | Description                                                                                                                                                   | Example                                                                                                           |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Connected                                             | If there is a path from vertex v to vertex w, then there is also a path from w to v. The two vertices, v and w, are said to be connected.                     | 7 6 5                                                                                                             |
| Disconnected                                          | A graph is said to be connected if every pair of vertices in the graph is connected, and is disconnected otherwise.                                           | 9 4 3                                                                                                             |
| Connected<br>Component                                | A maximal set of vertices that is connected.                                                                                                                  | See graph above for examples.                                                                                     |
| Isolated Vertex                                       | A vertex that is not connected with any other vertex is called an <u>isolated vertex</u> and is therefore a connected component with only one vertex.         | •                                                                                                                 |
|                                                       |                                                                                                                                                               | 2-vertex-connected:                                                                                               |
| k-Vertex-Connected                                    | The graph contains at least k + 1 <u>vertices</u> and remains connected after any k - 1 vertices are <b>removed</b> from the graph. (mesh network)            |                                                                                                                   |
| Vertex Connectivity                                   | The largest k such that the graph is k-vertex-connected.                                                                                                      | $\kappa(G)$ $\kappa(K_n) = n - 1$                                                                                 |
| k-Edge-Connected                                      | The graph remains connected after any k - 1 edges are removed from the graph.                                                                                 | 3-edge-conncted:                                                                                                  |
| Edge Connectivity                                     | The largest k such that the graph is kedge-connected.                                                                                                         | $\lambda(G)$ $\lambda(K_n) = n - 1$                                                                               |
| Theorem: Upper bound for vertex and edge connectivity | Let G be an undirected graph. Denote the minimum degree of any vertex in G by $\delta(G)$ . Then $\kappa(G) \leq \delta(G)$ and $\lambda(G) \leq \delta(G)$ . | The minimum degree of any vertex is at least an upper bound for both the edge and vertex connectivity of a graph. |
| Complete Graph                                        | There is no set of vertices whose removal disconnects the graph.                                                                                              | Full mesh network.                                                                                                |

## **Euler Circuits and Trails**

| Term                                                                   | Description                                                                                                                                                                                                                                                                                                                                      | Example                                                  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Euler Circuit                                                          | An undirected graph circuit that contains every edge and every vertex.  Every vertex reached. Every edge occurs exactly once.                                                                                                                                                                                                                    | a d d                                                    |
| Theorem: Required conditions for an Euler circuit in a graph           | If an undirected graph G has an Euler circuit, then G is 1) connected and 2) every vertex in G has an even degree.                                                                                                                                                                                                                               | deg(v) = 2k<br>where $k \in \mathbb{Z}^+$                |
| Theorem: Sufficient conditions for an Euler circuit in a graph         | If an undirected graph G is connected and even degree, then G has an Euler circuit.                                                                                                                                                                                                                                                              | very vertex in G has an                                  |
| Theorem: Characterization of graphs that have an Euler circuit         | An undirected graph G has an Euler circuit if connected and every vertex in G has even de                                                                                                                                                                                                                                                        | -                                                        |
| Procedure                                                              | Find circuit C in G.  Repeat until C is an Euler circuit:  Create new graph G':  Remove edges in C from G  Remove isolated vertices  Find vertex w in G' and C (select any  Find circuit C' in G' starting at w  Combine C and C'  Follow edges in C to w  Follow edges in C' back to w  Follow remaining edges in C  Rename new circuit to be C | )                                                        |
| Euler Trail                                                            | An undirected graph open trail that includes <u>each</u> edge exactly once.                                                                                                                                                                                                                                                                      | e d c                                                    |
| Theorem:<br>Characterizations of<br>graphs that have an Euler<br>trail | An undirected graph G has an Euler trail if and only if G is 1) connected and 2) has exactly two vertices with odd degree.                                                                                                                                                                                                                       | Euler trail begins and ends with vertices of odd degree. |

### **Tree Terms**

| Term                     | Description                                                                                                                         | Example                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Tree                     | An undirected graph that is connected and has no cycles.                                                                            | Computer file system                                                        |
| Free Tree                | There is no particular organization of the vertices and edges                                                                       |                                                                             |
| Rooted Tree              | The vertex at the top is designated as the <b>root</b> of the tree.                                                                 | root                                                                        |
| Level                    | The <b>level</b> of a vertex is its distance (number of edges in the shortest path between the two vertices) from the <u>root</u> . | The root is the only level 0 vertex.                                        |
| Height                   | The <b>height</b> of a tree is the highest level of any vertex.                                                                     | Most hops to bottom.                                                        |
| Parent                   | The first vertex after v encountered along the path from v to the root. (One vertex above v.)                                       | The parent of vertex g is h.                                                |
| Child                    | The vertex below the parent.                                                                                                        | Vertices c and g are the children of vertex h.                              |
| Ancestor                 | All vertices up in path.                                                                                                            | The ancestors of vertex g are h, d, and b.                                  |
| Descendant               | All vertices down in path.                                                                                                          | The descendants of vertex h are c, g, and k.                                |
| Leaf                     | Rooted: A vertex which has no children. Free: A vertex of degree 1.                                                                 | The leaves are a, f, c, k, i, and j. $deg(v) = 1$                           |
| Sibling                  | Vertices with the same parent.                                                                                                      | Vertices h, i, and j are siblings of parent d.                              |
| Subtree                  | A tree consisting of new root v and all v's descendants.                                                                            | The subtree rooted at h includes h, c, g, and k and the edges between them. |
| Game Tree                | Shows all possible playing strategies of both players in a game.  Games can be deterministic (tic-tac-toe) or chance (dice).        | $v_i$ = game configuration                                                  |
| Variable<br>Length Codes | The number of bits for each character can vary.                                                                                     | 'a' = 1, 'e' = 01, etc.                                                     |

| Prefix Code     | The code for one character cannot be a prefix | Leaf nodes guarantee the prefix       |
|-----------------|-----------------------------------------------|---------------------------------------|
| Prefix Code     | of the code for another character.            | property.                             |
| ASCII           | 8-Bit characters (256 max.)                   | UTF-8                                 |
| Unicode         | 16-Bit characters (64K max.)                  | UTF-16                                |
| Internal Vertex | Free: The vertex has degree at least two.     | $deg(v) \ge 2$                        |
|                 | A graph that has no cycles and that is not    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Forest          | necessarily connected.                        |                                       |
|                 | E =  V  -  C  (connected components)          |                                       |

### **Tree Theorems**

| Term                                     | Description                                                                                                                                                        | Example            |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Theorem: Unique<br><u>paths</u> in trees | Let T be a tree and let u and v be two vertices in T. There is exactly one path between u and v.  There is a unique path between every pair of vertices in a tree. | a b d i j          |
| Theorem: Number of                       | Let T be a tree with n vertices and m edges,                                                                                                                       | m = n - 1          |
| edges in a tree                          | then m = n - 1.                                                                                                                                                    | m = n - 1          |
| Theorem: Number of<br>leaves in a tree   | Any free tree with at least two vertices has at least two leaves.                                                                                                  | Lower bound        |
| Theorem: Prim's                          | Prim's algorithm finds a minimum spanning                                                                                                                          | See Spanning Trees |
| Algorithm                                | tree of the input weighted graph.                                                                                                                                  | below              |

### **Tree Traversals**

| Term                 | Description                                     | Example                            |
|----------------------|-------------------------------------------------|------------------------------------|
| Traversal            | Systematically visiting each vertex.            | Hit a node.                        |
| Pre-Order Traversal  | A vertex is visited before its descendants.     | First hit (left side) of           |
| Pre-Order Traversal  |                                                 | tree vertex                        |
| In-Order Traversal   | A vertex is visited after its first descendant. | 2 <sup>nd</sup> hit of tree vertex |
| Doct Order Treversel | A vertex is visited after its descendants.      | Last hit (right side) of           |
| Post-Order Traversal | A vertex is visited after its descendants.      | tree vertex                        |

## **Spanning Trees**

| Term                          | Description                                                                                                                                                                                                                                                                                                                                                                     | Example                                                 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Spanning Tree                 | For a connected graph G. a subgraph of G which contains all the vertices in G and is a tree.                                                                                                                                                                                                                                                                                    | Fewest edges possible to visit all vertices             |
| Depth-First Search<br>(DFS)   | Favors going deep into the graph.  Produces trees with longer paths.                                                                                                                                                                                                                                                                                                            | Explorer ventures far away from home                    |
| Breadth-First Search<br>(BFS) | Explores the graph by distance from the initial vertex, starting with its neighbors and expanding the tree to neighbors of neighbors.  Produces trees with shorter paths.                                                                                                                                                                                                       | Explorer ventures close to home                         |
| Weighted Graph                | A graph G = (V ,E), along with a function w: E $\rightarrow$ $\mathbb{R}$ .                                                                                                                                                                                                                                                                                                     | The function w assigns a real number to every edge.     |
| Weight w(G)                   | 1 2 2 3 5 7 5                                                                                                                                                                                                                                                                                                                                                                   | w(G) is the sum of<br>the weights of the<br>edges in G. |
| Minimum Spanning Tree (MST)   | A spanning tree T of G whose weight is no larger than any other spanning tree of G.                                                                                                                                                                                                                                                                                             | Goal: Min. weight                                       |
|                               | A classic algorithm for finding minimum spanning trees developed by mathematician Robert Prim in 1957.                                                                                                                                                                                                                                                                          | Always choose min.<br>edge in queue.                    |
| Prim's Algorithm              | <pre>Input: An undirected, connected, weighted graph G. Output: T, a minimum spanning tree for G.  T := Ø. Pick any vertex in G and add it to T.  For j = 1 to n-1     Let C be the set of edges with one endpoint inside T and one endpoint outside T.     Let e be a minimum weight edge in C.     Add e to T.     Add the endpoint of e not already in T to T. End-for</pre> |                                                         |

#### Sources:

- <u>SNHU MAT 230</u> Discrete Mathematics, zyBooks.
- See also "Harold's Directed Graphs Cheat Sheet".