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Symbols

	Symbol
	Name / Definition
	Symbol
	Name / Definition

	∅
	Empty set, set with no members
	R0, R90, R180, R270
	Rotation

	ℕ
	Natural numbers
	R360/n
	Cyclic Rotation

	ℤ
	Integers (Zahlen)
	H, V, D, D’
	Flip (horizontal, vertical, diagonal)

	ℚ
	Rational numbers
	〈a〉
	The set {an | n ∈ ℤ} under • (na if +)

	ℝ
	Real numbers
	
	2x2 Matrix Inverse

	ℂ
	Complex numbers
	Zn
	Group of integers modulo n

	F*
	Nonzero Field
	Zp
	Zn where p a prime

	⊆
	Is a subset of 
	mod
	Modulus arithmetic

	∈
	Is an element of
	GL(2, F)
	General Linear Group of 2x2 matrices over the field F

	∞
	Infinity
	gn
	The group operation on g n times

	°
	Degrees
	|G|
	Order of a Group

	≤, ≠, ≥
	Inequalities
	|g|
	Order of an Element

	•, ∙
	Multiply
	gcd (a, b)
	Greatest Common Divisor

	÷
	Division
	lcm (a, b)
	Least Common Multiple

	a | b
	a divides b
	
	

	a-1
	Inverse
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Ch. 0: Preliminaries

	Definition
	Description

	Well Ordering Principle
	Every nonempty set of positive integers contains a smallest member.

	Theorem 0.1:
Division Algorithm
	Let a and b be integers with b > 0. 
Then there exist unique integers q and r with the property that 
a = bq + r, where 0 ≤ r < b.
Example: For a = 17 and b = 5, the division algorithm gives 17 = 5 ⋅ 3 + 2. Here q = 3 and r = 2.

	Greatest Common Divisor (GCD)
	

Largest positive integer that is a factor of both x and y.
Think Intersection (∩) of .

	
	The greatest common divisor of two nonzero integers a and b is the largest of all common divisors of a and b. We denote this integer by gcd (a, b).

	Relatively Prime Integers
	When gcd (a, b) = 1, we say a and b are relatively prime.

	Theorem 0.2:
GCD Is a Linear Combination
	For any nonzero integers a and b, there exist integers s and t such that gcd (a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.

	Corollary
	If a and b are relatively prime, then there exist integers s and t such that as + bt = 1.
Example: gcd (4, 15) = 1 where 4 and 15 are relatively prime and 4 ⋅ 4 + 15(-1) = 1.

	Euclid’s Lemma
p | ab Implies p | a or p | b
	If p is a prime that divides ab, then p divides a or p divides b. 


	Theorem 0.3:
Fundamental Theorem of Arithmetic
	Every integer greater than 1 is a prime or a product of primes. 
This product is unique, except for the order in which the factors appear. 
That is, if n = p1p2 ... pr and n = q1q2 ... qs, where the p’s and q’s are primes, then r = s and, after renumbering the q’s, we have pi = qi for all i.

	Least Common Multiple (LCM)
	

Smallest positive integer that is an integer multiple of both x and y.
Think Union (∪) of .

	
	The least common multiple of two nonzero integers a and b is the smallest positive integer that is a multiple of both a and b. 
We will denote this integer by lcm (a, b).
Example: lcm (4, 6) = 12

	Computing ab mod n or (a + b) mod n
	Let n be a fixed positive integer greater than 1. If a mod n = a’ and b mod n = b’, then 
(a + b) mod n = (a’ + b’) mod n
(ab) mod n = (a’b’) mod n

	Logic Gates
	A logic gate is a device that accepts as inputs two possible states (on or off) and produces one output (on or off). This can be conveniently modeled using 0 and 1 and modulo 2 arithmetic.
x AND y		xy
x OR y		x + y + xy
x XOR y		x + y
MAJ(x, y, z) 	xz + xy + yz.

	Theorem 0.4:
Properties of Complex Numbers
	1. Closure under addition:
(a + bi) + (c + di) = (a + c) + (b + d)i
2. Closure under multiplication:
(a + bi) (c + di) = (ac) + (ad)i + (bc)i + (bd)i2 
= (ac - bd) + (ad + bc)i 
3. Closure under division (c + di ≠ 0):





4. Complex conjugation:
(a + bi) (a - bi) = a2 + b2 
5. Inverses:
For every nonzero complex number a + bi there is a complex number c + di such that (a + bi) (c + di) = 1 (That is, (a + bi)-1 exists in C). 
6. Powers:
For every complex number a + bi = r(cos θ + i sin θ ) and every positive integer n, we have 
(a + bi)n = (r(cos θ + i sin θ))n = rn (cos nθ + i sin nθ). 
7. nth-roots of a + bi:
For any positive integer n the n distinct nth roots of a + bi = r(cos θ + i sin θ) are

for k = 0, 1, …, n - 1.

	Theorem 0.5:
First Principle of Mathematical Induction
	Let S be a set of integers containing a. Suppose S has the property that whenever some integer n ≥ a belongs to S, then the integer n + 1 also belongs to S. Then, S contains every integer greater than or equal to a.

	DeMoivre’s Theorem
	(cos θ + i sin θ)n = (cos nθ + i sin nθ)

	Theorem 0.6:
Second Principle of Mathematical Induction



	Let S be a set of integers containing a. Suppose S has the property that n belongs to S whenever every integer less than n and greater than or equal to a belongs to S. Then, S contains every integer greater than or equal to a.

	Equivalence Relation
	An equivalence relation on a set S is a set R of ordered pairs of elements of S such that
1. (a, a) ∈ R for all a ∈ S			  (reflexive property). 
2. (a, b) ∈ R implies (b, a) ∈ R		  (symmetric property). 
3. (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R (transitive property).
NOTE: It is customary to write aRb instead of (a, b) ∈ R.

	Theorem 0.7:
Equivalence Classes Partition
	The equivalence classes of an equivalence relation on a set S constitute a partition of S. Conversely, for any partition P of S, there is an equivalence relation on S whose equivalence classes are the elements of P.

	Function (Mapping) 
	A function (or mapping) f from a set A to a set B is a rule that assigns to each element a of A exactly one element b of B. The set A is called the domain of f, and B is called the range of f. If f assigns b to a, then b is called the image of a under f. The subset of B comprising all the images of elements of A is called the image of A under f.

	Composition of Functions
	Let f: A → B and g: B → C. The composition gf is the mapping from A to C defined by (gf)(a) = g(f(a)) for all a in A.

[image: ]

(f ∘ g)(x) = f(g(x))

	One-to-One Function
	A function f from a set A is called one-to-one if for every a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2.

[image: ]


	Function from A onto B
	A function f from a set A to a set B is said to be onto B if each element of B is the image of at least one element of A. In symbols, f: A → B is onto if for each b in B there is at least one a in A such that f(a) = b.

[image: ]


	Theorem 0.8:
Properties of Functions
	Given functions f: A → B, g: B → C, and h: C → D, then 
1. h(gf) = (hg)f  (associativity). 
2. If f and g are one-to-one, then gf is one-to-one. 
3. If f and g are onto, then gf is onto. 
4. If f is one-to-one and onto, then there is a function f-1 from B onto A such that (f-1f)(f) = f for all f in A and (ff-1)(g) = g for all g in B.

[image: ]

	Cancellation Property
	Suppose f, g, and h are functions. If fh = gh and h is one-to-one and onto, then f = g.




Ch. 1: Introduction to Groups

	Definition
	Description

	Abelian
	Commutative (ab = ba)
Named after Niels Abel, Norwegian mathematician.

	Non-Abelian
	Not commutative (ab ≠ ba)

	Dn: 
Dihedral Groups
	Dn = dihedral group of order 2n.
Dihedral = having or contained by two plane faces.
Examples: D3, D4, D5, D6
[image: ]

	D4: 
Dihedral Group of Order 8
	D4 (Square)
The eight motions R0, R90, R180, R270, H, V, D, and D’, together with the operation composition, form a mathematical system called the dihedral group of order 8 (the order of a group is the number of elements it contains). It is denoted by D4.

	Cayley Table
	Operations table. All elements in the rows and columns, filled in with the operation results.
Named after Arthur Cayley, English mathematician.

	Cyclic Rotation Group of Order n
	<R360/n>
Many objects and figures have rotational symmetry but not reflective symmetry. 
A symmetry group consisting of the rotational symmetries of 0°, 360°/n, 2(360°)/n, ..., (n - 1)360°/n, and no other symmetries.






Ch. 2: Groups

	Theorem / Definition
	Description

	Binary Operation

	Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of G an element of G.
(Closure)

	Group
	Let G be a set together with a binary operation (usually called multiplication) that assigns to each ordered pair (a, b) of elements of G an element in G (closure) denoted by ab. We say G is a group under this operation if the following three properties are satisfied. 

1. Associativity. The operation is associative; that is, (ab)c = a(bc) for all a, b, c in G. 

2. Identity. There is an element e (called the identity) in G such that ae = ea = a for all a in G. 

3. Inverses. For each element a in G, there is an element b in G (called an inverse of a) such that ab = ba = e. 

	Algebraic Systems
	Sets with one or more binary operations.

	Abstract Algebra
	The goal of abstract algebra is to discover truths about algebraic systems that are independent of the specific nature of the operations. 
All one knows or needs to know is that these operations, whatever they may be, have certain properties. 
We then seek to deduce consequences of these properties.

	GL(2, F)
	General Linear Group of 2x2 matrices over the field F.
Non-Abelian.

	SL(2, F)
	Special Linear Group of 2x2 matrices over the field F with determinant 1. Non-Abelian.

	Zn
	Group of integers modulo n. 
Zn = {0, 1, ..., n - 1} for n ≥ 1.
Implies the operation of addition.

	U(n)
	The set of all positive integers less than n and relatively prime to n under the operation of multiplication modulo n.
U(n) = {a ∈ Zn | a < n and gcd (a, n) = 1}.
If n is a prime, then U(n) = {0, 1, ..., n - 1}.

	U(n) Examples
	U(2) = {1, 2}		prime
U(3) = {1, 2, 3}		prime
U(4) = {1, 3}
U(5) = {1, 2, 3, 4}	prime
U(6) = {1, 3, 5}
U(7) = {1, 2, 3, 4, 5, 6}	prime
U(8) = {1, 3, 5, 7}
U(10) = {1, 3, 7, 9}
U(15)={1, 2, 4, 7, 8, 11, 13, 14}
U(18) = {1, 5, 7, 11, 13, 17}

	Theorem 2.1:
Uniqueness of the Identity
	In a group G, there is only one identity element.

	Theorem 2.2:
Cancellation
	In a group G, the right and left cancellation laws hold; that is, ba = ca implies b = c, and ab = ac implies b = c.

	Theorem 2.3:
Uniqueness of Inverses
	For each element a in a group G, there is a unique element b in G such that ab = ba = e.

	gn
	Product: g g g g … g (n factors)
Sum: g+g+g+g+…+g (n factors)
g0 = e or identity
If g is negative: gn = (g-1)|n| 

	Multiplicative Group
	a• b or ab	Multiplication
e or 1		Identity or one
a-1		Multiplicative inverse of a
an		Power of a
ab-1		Quotient

	Additive Group
	a + b		Addition
0		Identity or zero
-a		Additive inverse of a
na		Multiple of a
a - b		Difference

	Theorem 2.4:
Socks–Shoes Property
	For group elements a and b, (ab)-1 = b-1a-1.

	Division Algorithm
	k = qn + r with 0 ≤ r < n.
q is the quotient; r is the remainder.
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Ch. 3: Finite Groups; Subgroups

	Axiom / Theorem / Lemma / Definition
	Description

	Order of a Group (|G|)
	The number of elements of a group (finite or infinite) is called its order. We will use |G| to denote the order of G.

	Order of an Element (|g|)
	The order of an element g in a group G is the smallest positive integer n such that gn = e. 
(In additive notation, this would be ng = 0.)
If no such integer exists, we say that g has infinite order. 
The order of an element g is denoted by |g|.

	Subgroup
	If a subset H of a group G is itself a group under the operation of G, we say that H is a subgroup of G.
H ≤ G

	Proper Subgroup
	H < G means “H is a proper subgroup of G”.

	Trivial Subgroup
	The trivial subgroup of any group is the subgroup {e} consisting of just the identity element.

	Modular Arithmetic
	Google: To compute 134 mod 15, just type in the search box:
“13ˆ4 mod 15”

	Theorem 3.1:
One-Step Subgroup Test
	Let G be a group and H a nonempty subset of G. If ab-1 is in H whenever a and b are in H, then H is a subgroup of G. 
(In additive notation, if a - b is in H whenever a and b are in H, then H is a subgroup of G.)

1. Identify the property P that distinguishes the elements of H; that is, identify a defining condition. 

2. Prove that the identity has property P. (This verifies that H is nonempty.) 

3. Assume that two elements a and b have property P. 

4. Use the assumption that a and b have property P to show that ab-1 has property P. 

	Theorem 3.2:
Two-Step Subgroup Test
	Let G be a group and let H be a nonempty subset of G. If ab is in H whenever a and b are in H (H is closed under the operation), and a-1 is in H whenever a is in H (H is closed under taking inverses), then H is a subgroup of G.

	Not a Subgroup
	To guarantee that the subset is not a subgroup, show one:

1. Show that the identity is not in the set. 
2. Exhibit an element of the set whose inverse is not in the set. 
3. Exhibit two elements of the set whose product is not in the set.

	Theorem 3.3:
Finite Subgroup Test 
	Let H be a nonempty finite subset of a group G. 
If H is closed under the operation of G, then H is a subgroup of G.

	Cyclic Subgroup 〈a〉
	The subgroup 〈a〉 is called the cyclic subgroup of G generated by a.
〈a〉 = {an | n ∈ ℤ} under multiplication
〈a〉 = {na | n ∈ ℤ} under addition

	Cyclic Group
	In the case that G = 〈a〉 = {an | n ∈ ℤ}, we say that G is cyclic and a is a generator of G.

Cyclic Group if there is an element a in G such that G = {an | n ∈ ℤ}.

Element ‘a’ is called the generator.
A cyclic group may have many generators.

	Theorem 3.4:
〈a〉 Is a Subgroup
	Let G be a group, and let a be any element of G. Then, 〈a〉 is a subgroup of G.
Use 〈a〉 or <a>.

	〈a〉 Examples
	Under Addition:
〈2〉 = {0, 2, 4, 6, …, 2n, …}
〈2〉 = Z20 〈8, 14〉 = {0, 2, 4, …, 18}
〈3〉 = {0, 3, 6, 9, …, 3n, …}
U(10) = [1, 3, 7, 9] = 〈3〉 = 〈7〉
Z8 = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = {0, 1, 2, 3, 4, 5, 6, 7}

Under Multiplication:
〈3〉 = {3, 9, 7, 1} = {1, 3, 7, 9} mod 10
〈3〉 = {31, 32, 33, 34, 35, 36} = {1, 3, 5, 9, 11, 13} mod 14

	Center of a Group
	The center, Z(G), of a group G is the subset of elements in G that commute with every element of G. In symbols,
Z(G) = {a ∈ G | ax = xa for all x in G}. 
[The German word for center is Zentrum]

	Theorem 3.5:
Center Is a Subgroup
	The center of a group G is a subgroup of G.

	Centralizer of a in G
	Let a be a fixed element of a group G. The centralizer of a in G, C(a), is the set of all elements in G that commute with a. In symbols, 
C(a) = {g ∈ G | ga = ag}.

	Theorem 3.6:
C(a) Is a Subgroup
	For each a in a group G, the centralizer of a is a subgroup of G.





Ch. 4: Cyclic Groups

	Axiom / Theorem / Lemma / Definition
	Description

	Cyclic Group
	If there is an element a in G such that G = 〈a〉 = {an | n ∈ ℤ}. Element a is called the generator.

	Theorem 4.1:
Criterion for ai = aj
	Let G be a group, and let a belong to G. 
If a has infinite order, then ai = aj if and only if i = j.
If a has finite order, say, n, then 〈a〉 = {e, a, a2, ..., an–1} and ai = aj if and only if n divides into i – j evenly.

	Corollary 1:
|a| = |〈a〉|
	For any group element a, |a| = |〈a〉|.

	Corollary 2: 
ak = e Implies That |a| Divides k
	Let G be a group and let a be an element of order n in G. 
If ak = e, then n divides k.

	Corollary 3:
Relationship between |ab| and |a||b|
	If a and b belong to a finite group and ab = ba, then |ab| divides |a||b|. 

	Implication of Theorem 4.1
	Finite Case:
Multiplication in 〈a〉 is addition modulo n.
Example: If (i + j) mod n = k, then aiaj = ak = a(i + j) mod n.
Multiplication in 〈a〉 works the same as addition in Zn whenever |a| = n.

Infinite Case:
Multiplication in 〈a〉 is addition.
Example: aiaj = ai+j.
Multiplication in 〈a〉 works the same as addition in Z.

	Theorem 4.2:
〈ak〉 = 〈agcd(n,k)〉 and |ak| = n/gcd (n, k)
	Let a be an element of finite order n in a group and let k be a positive integer. 
Then 〈ak〉 = 〈agcd(n,k)〉 
and |ak| = n/gcd (n, k).

The greatest common divisor (GCD) of two nonzero integers a and b is the greatest positive integer d such that d is a divisor of both a and b.

	Corollary 1:
Orders of Elements in Finite Cyclic Groups
	In a finite cyclic group, the order of an element divides the order of the group.

	Corollary 2:
Criterion for 〈ai〉 = 〈aj〉 and |ai| = |aj|
	Let |a| = n. 
Then 〈ai〉 = 〈aj〉 if and only if gcd (n, i) = gcd (n, j), 
and |ai| = |aj| if and only if gcd (n, i) = gcd (n, j).

	Corollary 3:
Generators of Finite Cyclic Groups
	Let |a| = n. 
Then 〈a〉 = 〈aj〉 if and only if gcd (n, j) = 1, 
and |a| = |〈aj〉| if and only if gcd (n, j) = 1.
NOTE: gcd (n, j) = 1 means n and j are relatively prime.

	Corollary 4:
Generators of Zn
	An integer k in Zn is a generator of Zn if and only if gcd(n, k) = 1.

	Theorem 4.3:
Fundamental Theorem of Cyclic Groups
	Every subgroup of a cyclic group is cyclic. 
Moreover, if |〈a〉| = n, then the order of any subgroup of 〈a〉 is a divisor of n; 
and, for each positive divisor k of n, the group 〈a〉 has exactly one subgroup of order k — namely, 〈an/k〉.

	Corollary:
Subgroups of Zn
	For each positive divisor k of n, the set 〈n/k〉 is the unique subgroup of Zn of order k; moreover, these are the only subgroups of Zn.

	Theorem 4.4:
Number of Elements of Each Order in a Cyclic Group
	If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is φ(d).

	Corollary:
Number of Elements of Order d in a Finite Group
	In a finite group, the number of elements of order d is a multiple of φ(d).






Ch. 5: Permutation Groups

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	






Ch. 6: Isomorphisms

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	






Ch. 7: Cosets and Lagrange’s Theorem

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	



Note: Skip Ch. 8




Ch. 9: Normal Subgroups and Factor Groups

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	






Ch. 10: Group Homomorphisms

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	







Ch. 11: Fundamental Theorem of Finite Abelian Groups

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	








Ch. 12: Introduction to Rings

	Axiom / Theorem / Lemma / Definition
	Description

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	





College Course
· SNHU MAT 470 - Real Analysis, The Real Numbers and Real Analysis, Ethan D. Bloch, Springer New York, 2011.
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· Bhoris Dhanjal, Bhorice2099 on Reddit (2020, 17 December).  Imgur, Intro Group Theory Cheat Sheet. Overleaf Source Document. See textbook Part 2: Groups.

· Bhoris Dhanjal, Bhorice2099 on Reddit (2021, 20 March).  Imgur, Intro Ring and Field Theory Cheat Sheet. Overleaf Source Document. See textbook Part 3: Rings and Part 4: Fields.

· Bhoris Dhanjal, Bhorice2099 on Reddit (2021, 28 December).  Imgur, Intro Galois Theory Cheat Sheet. Github Source Document. See textbook Ch 32: An Introduction to Galois Theory.
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o £ H = {z} then |H| — ||, if |H| — n < oc then ¢ — 1

* Any two cyclic groups of the same order are isomorphic.

Two-Line to Cycle notation for permutations
23 4
; 5 j 1 1)~ (125)(34) — (34(125) — (39)(512) — (15)(25)(34)
Here, the last form is a case of 2-cycle (transposition).

Cosets and Quotient Groups

Forany N < ¢ and any g € ¢/

N~ {gn|neN}— {g.ghi,ghs...}and,

e Ng=1{ng neN}={ghighag.. }arecalled a left coset and a right
cosct respectively.

Fora Group G and N < G, the quotient group of N in G (i.e. G/N), is the set
of cosets of Nin G.

Lagrange’s Theorem and some results

Lagrange’s Theorem: [or a finite group G and I < G,
+ The order of H divides the order of G, and,
* The number of left cosets of H in G equals 15

heet

i. The First Isomorphism Theorem:

lfi: G » Hisahomomorphism of groups. Then ker ¢ < G and,
Glherg = 5(G).

ii. The Second Isomoprhism Theorem:
For a group G with, 4, B < G and, A < ]
AB ANB < Aand, AB/B > A
The Third Isomoprhism Theorem:

Lor a group ¢ with, 1/, K < C and, 1l < K.
[ Yeli e

Parity of Permutations and Alternating Groups

The parity of any permutation ¢ is given by the parity of the number of its
2-cycles (transpositions).

5(B). Then AB < G,
B

Then &/11 < C/if and,

Alternating Groups:
An alternating group is the group of even permutations of a finite set of
length n. It is denoted by A, it's order is 3

s and Orbits

o IF G is a group acting on the non-empty set A. Then a ~ b < a —g-b
for some g ¢ Ci. Where ~ s an equivalence relation.

* The orbit of G containing a is given as O, — {g-a g € G}

* The action of (7 on A is called transitive if there is only one orbit.

* Conjugacy classes of G is the equivalence classes of G when it acts on itself

with conjugation. i.e. gag~' | g £ G

Equivalence Clas

Class equations and Orbit-stabilizer Theorem

Class equation of a finite group G is written as:

|G = Z(G)] | | S(Conjugancy classes of G)|

Oribit-stabilizer Theorem:

Viora group G acting ona sct , forany s ¢ we have, [0,[|G4| = |G

Cayley’s Theorem

Cayley’s Theorem:
Every group is isomorphic to a subgroup of some symmettic group. If ¢ is a
group of order n, then G is isomoprhic to a subgroup of S,

Automorphisms

Automorphism of G is defined as an isomorphism from & onto itself.
The set of all automorphisms of G is denoted by Aut(G)

Some important results

« 1f G is a finite group and « € G, then the order of = divides the order of G,
and 7l —ev¥r e

I G is a group of prime order, then & is cyclic

{ ¢ is a finite group and p is a prime dividing |G| then
G'has an element of order p.

p-groups and Sylow p-groups

* p-group is defined as a group of order p* for some 4 > L. Sub-groups of G
which are p-groups are called p-subgroups.

+ Sylow p-group is defined as a group of order p®rm, where p - 11, a sub-
group of order p* is called a Sylow p-subgroup of G. Syl,(G) is the set of
Sylow p-subgroups of .

The Sylow Theorems

i. The First Sylow Theorem:

1f p divides (7], then & has a Sylow p-subgroup.

ii. The Second Sylow Theorem:

All Sylow p-subgroups of G arc conjugate to cach other for a fixed p.
iii. The Third Sylow Theotem:

2, = 1{mod p), where n, is the number of Sylow p-subgroups of C.
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Aring F is a set with two binary operations — and x satisfying the following
axioms:

i. (R, +) is an abelian group.

ii. Multiplicative associativity: (¢ x b) x ¢ = a x (b x ¢) V. b.c € R.

iii. Left and right distributivity:

(a+b)xc—(axe)+(bxe)amdax (b+ec)—(axb)+(axc).

Tn addition to these rings may also have the following optional properties.
a. Multiplicative commutativity: a x b= b x o, ¥a,b & R.

b. Multiplicative Identity: =1 ¢ Rst. e #0¢ R1xa—ax1l—a.

c. Multiplicative Inverse: Vo £ 0¢ R _a™ ¢ Rstaxat—atxa—1.
FOR THE PURPOSE OF THIS SHEET WE LOOK AT RINGS WITH MUL-
TIPLICATIVE COMMUTATIVITY AND 1#0.

Aficld #'is a set with two binary operations | and x satisfying the following
axioms:

i. (F,+) is an abelian group with identity 0.

ii. The non-zero clements of F form a abelian group under multiplication
with identity 1.

iii. Left and right distributivity.

Polynomial Rings
For a ring R, R ] denotes the polynomial ring of a single variable : s.t.the
elements of /2[] are of the form
@t + x4 a1z +ag withn > 0and e, € R
Polynomial rings can be generalized for multiple variables.

Zero Divisors, Units and Integral Domains
i. Zero Divisor: a # 0 ¢ A is called a zero divisor of Rif 46 #£ 0 ¢ A st
either ab = () or ba = (.
ii. Unit: Fora ring R with identity 1 # 0, u € Riscalled a unitin Rif 3v € B
ww—vu—1.
Integral Domain: A commutative ring with identity 1 # 0 is called an
integral domain if it has no zero divisors.

« Any finite integral domain is a field.

« If #is an intcgral domain than the polynomial ring of onc variable over

R,ie. Rlz]. is also a integral domain.

A subring of the ring R is defined as a subgroup of R that is closed under
multiplication.

Ring Homomorphisms, Isomorphisms and Kernels

For rings R.and .
i. Ring Homomotphism is a map i : R — § satisfying:
o wlatb) —pla) tpb)Fabe R
o slab) = pla)p() Yabe R
ii. Isomorphism is a bijective ring homomorphism.
iii. Kernel of the ring homomorphism i is the sct of clements of £ that map
to0in 5.
« Theimage of i is a subring of S.
o The kernel of i is a subring of S. (Tor Rings without 1)

Intro Ring and Field Theory Cheat Sheet
S [deals |

Ideal: A subset  of ring & is called an ideal of R i
« Ttis a subring of 7.
o Ttis closed under both left and right multiplication with elements from
R
Tdeals are to rings what normal subgroups are to groups.

Noetherian Ring;

A commutative ring R is called Noetherian if there is no infinite increasing
chain of ideals in &, i.e. when I, < Iy C ;... is an ascending chain of ideals
Ak e Zt st Iy = Ty ¥ 2 m.

Tt is equivalent to say that 7 is Noetherian if every ideal of R is finitely gen-
erated.

Quotient Rings

Tet 17 be a ring with ideal 7. /T is called a quotient ring if
LD (s D) =(r—s) =1
i (r b D) % (s 1) = (rs) 11

First Isomorphism and Correspondence Theorem

i. First Isomorphism Theorem: Let i : R — § be a ring homomorphism
from ring R to S then:

» Kernel of  is an ideal of R,

o Image of  is a subring of S and,

o R/ Ker o2 ().
ii. Correspondence Theorem: Let I? be a ring, and 7 be an ideal of R.
The correspondence A « A/I is an inclusion preserving bijection between
the set of subrings A of R that contain 7 and the set of subrings of R/7.
or
There exists an inclusion preserving biijection between ideals in  containing
ker(z) and ideals in {22}

Principal, Prime and Maximal Ide:

i. Principal Ideals: An ideal generated by a single element is called a princi-
pal ideal.

ii. Prime Ideals: If P # F, then an ideal P is called a prime ideal if
ab¢ P,whena,b ¢ £ then at least onc of a and b in an clement of £. This is
analogous to the definition of prime nunbers in number theory

iii. Maximal Ideals: [f M/  I?, then an ideal M is called a maximal ideal if
the only ideals containing 3/ are A1 and £ itself.

o Lvery maximal ideal of R is a prime ideal.

o The ideal P is a prinie ideal in R iff 12/ P is an integral domain.

Zorn's Lemma

1f § is any nonempty partially ordered set in which every chain has an upper
bound, then § has a maximal element.

Ring of Fractions of an Integral Doma

Tet R be an integral domain. Let K be the ring of fractions of 1t s.t.
K — {#]a.b € B.b# 0}. K is also called a field of fractions since it always
forms a field for any ring £.

[ Y A

b d
ozl

Chinese Remainder Theorem

The ideals 7 and . of a ring J? are said to be comaximal if [ + J — ft.
Chinese Remainder Theorem: ¥ a.h € R, 92 € Rst.
& = a(mod I and 4

Hilbert Basis Theorem

1f Ris a noetherian ring then so is the polynomial ring Rlz].
Rl o, ] for finite n. is also noetherian.

Irreducible and Prime Elements

i. Trreducible Element An element a of ring 72 is called frreducible if it is
non-zero, not a unit and, only fas trivial divisors (i.e. wnits and products of units).
ii. Prime Element An clement a of ring £ is called prime if it is non-zero, not
aunitand, if a | be then either a | hor a | ¢ for some b,e & R.

The concept of primes and irreducible is the same in integers, but they are distinct in
general.

In an integral domain, every prime clement is irreducible, but the converse holds
only in UFDs.

Norm and Euclidean Domain

i Norm: For a integral domain £, any function & = £ » Z* U0 with
N(0) = 0is called a norm on R.

ii. Euclidean Domain: An integral domain R is called an Euclidean Do-
main if there is a norm & on R st. for any two elements a,b < F, where
6+40=¢r ¢ Rst.a—qgb rwherer—0or N(r) < N(b).

o Any field F is a trivial example of a Fuclidean Domain.

Principal Ideal Domains (PIDs)

A Principal Ideal Domain (PID) is an intcgral domain in which every ideal
is principal.

Every Euclidean Domain is a PID.

Examples:

oZ is a PID, but Z|z] is not.

o Ffic] if T is a field, o 73]

Unique Factorisation Domains (UFDs)

Two elements a,b € T are said to be associates in 12 if they differ by a unit,
ic. a — ubfor some unitu ¢ R. A Unique Factorisation Domain (UFD) is
an integral domain & in which every nonzero element » ¢ £ which is not a
unit follows the propertics:

i. 7 can we written as a finite prodtuct of irreducibles p, of R.

ii. This decomposition is unique up to associates, ie. if » — pips ... p, and
7 = q12...qu then m = n and for some renumbering of factors there is ps
associate to g,

The above definition can be equivalently stated as:

A ULD is any integral domain in which every non-zero, non-invertible element s
@ unique factorisation.

eEvery PID is a UID.

o Z|2[is a UID, but not a PID.

eln a ULD every non-zero clement is a prime iff it is irreducible.

« Fields C Fuclidean Domains < PIDs < UFDs © Tntegral Domains.
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A polynomial f(x) € Zu] is called primitive if n = deg(f) > 0, an > O and,
ged{agaan, ..., ay) = 1fora; € Z
Gauss’ Lemma: If f(x), g{x) ¢ Z are primitive —> fg is also primitive.

Eisenstein’s Criterion

The Eisenstein’s Criterion is a test for irreducibility of polynomials.

Let P bea prime ideal of the integral domain R amd, f(x) = #" +a,_ 15" '+
<-4y + ag be a polynomial in R[z].

Eisenstein’s Criterion states that f(x) is irreducible in R[x] if

®a, 1,...a1,ay are elements of P and,

« 4y is not an element of P2,

If Lisenstein’s Criterion does't directly apply to f(x) try on fla+1), i f(x+1) s irre-
ducible it implies f(x) is also irreducible.

el

Let L denote the identity of F.
The characteristic of a ficld F, denoted as ch(F) is defined as the smallest
integer p such that p - 1; — 0 if such a p exists and is defined as 0 otherwise.
o ch(+) is either 0 or a prime p, » Q and R have characteristic (

= 7,/p7 has characteristic p,

Field Extensions and Degree
If K is a field containing the subfield F7, then K is said to be an extension
field of F. Ttis denoted as K/F.

The degree of a ficld extension K/I” denoted by 'K : F] is the dimension of
K as a vector space over I'.

Spl
Splitting Fields: The extension ficld K of F is called a splitting field for the
polynomial f(x) & Fz] if (2} factors completely into linear factors in &|z]
but not over any proper subfield of i containing £
« Forany field 7, if f(«) € Fl2]. Then, there exists an extension K of F which
is a splitting field for f{x).

« A splitting field of a polynomial of degree n over F is of degree at most n!
over F.

« Any two splitting ficlds for a polynomial f(z) ¢ Flz] over a field F arc
isomorphic. « The polynomial 2" — 1 over Q has in general a splitting field
contained in C.

o Let Q((y) be the cyclotomic field of n* roots of unity. [QG, : Q = #(n)
where () is Euler’s totient function.

Algebraic Closure of Fields

o The field I s called an algebraic closure of I if I is algebraic over F and,
if every polynomial f(z) < ¥ splits completely over £.

« A field K is said to be algebraically closed if every polynomial with coeffi-
cients in K has a root n K. ¥ as defined above is algebraically closed.

« For every field F there exists an algebraically closed field K containing F.

Fundamental Theorem of Algebra

The field C s algebraically closed.

Finite Fields

« For every prime p € N there exists a field T, of order p, e..7/p7-
« For any finite field F, the order of I is ¢ — " for some prime p and positive
integer 7.

Irreducible Polynomials in Fields
« For a irreducible polynomial p(x) € F, there exists a field K containing a
isomorphic capy of F in which p(«c) has a root, i.e. there exists a field exten-
sion K of F in which p(x) has a root. A simple way to find this extension is
to consider the quotient X — F[z]/(p(x)).

o Lor the above case, let & — 2 mod (p(x)) ¢ K. Then the clements
1,6,62...67" are a basis for K as a vector space over F, with K : F| = n.
o For the above case, let o be the root of p(x) s.t. p(a) = 0. Then,

Flo) = Fal/(ple

I

lgebraic and Transcendental Elements

i. Algebraic Element: If I is a field extension over ¥, then o ¢ K is called
algebraic over £, if there exists some non-zero polynomial f(x) with cocffi-
cients, in F, s.t. f(a) = 0.

ii. Transcendental Element: Flements o € K which are not algebraic over F
ate called transcendental.

o If a is algebraic over T, then Fla] — F(a), if a is transcendental over F,
then #[a] # F(a).

Algebraic Extensions
o Let v be algebraic over F. There there exists a unique monic irreducible
polynomial n, Fl«] which has  as a root.

« If L/ F is an extension of fields and « is algebraic over both F and L then
M,z () divides ma, p(2) in Lfz].

o If #(o) is the field generated by o over £ then, F{a) = F[2]/(ma(z)
o Let £ C I C Lbe ficlds. Then [L : #] — [L : K][X : #] o Similarly, [ : #]
divides |L : FJ.

o Let K|, Ky be two finite extensions of field F contained in K. Then,
[KiKy : F| < [Ky @ F|[Ky : F, butif [i : F] = n,[Ks : F] = m and if
ged (m.n) = 1. Then, [K Kz : F| = [Ky : F [Ka : F| = nn.

tructure Theorem for Finite Fields

Tetpbea prime integer and let ¢ = p for some positive integer . Then the
following statements hold.
o There exists a ficld of order g.
= Any two ficlds of order ¢ are isomorphic.
o Let K be a field of order ¢. The multiplicative group K of non-zero
elements of K is a cyclic group of order g — 1.
® Tet K be a field of order ¢. The elements of K are the roots of
@t —x e Tylz].
* A field of order p” contains a field of order p* +— k|r
The irreducible factors of 29 2 over I are the irreducible polynomials
in k2] whose degree divides r.
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Definition of a Field

Afield F is a set with two binary operators (+, x) satisfying the following
axioms,
* (E+) is an abelian group with identity 0.
* The rion zero elements of F form an abelian group under multiplication
with identity L # 0.
+ Leftand right distributivity

Characteristic of Fields
A characteristic of a field F,, denoted by ¢i(F) is defined a
integer psuch that ] 11 -~ | 1 = 0. lf sucha p docs not,

is the smallest
st ch(£) =0

» times

A K-algebra (or algebra over a field) is a ring 4 which is a module over field
K with multiplication being K-bilinear, (i.e., kiay - kanz = kikaaaz).

For fields K, L. We say L is a field extension of K if K is a subfield of L.
Alternatively, L is a ficld extension of K, if L is a K-algcbra.

Algebraic elements and Algebraic extensions

For a field extension K ¢ L.
Algebraic element: o € I is called algebraic if 1P £ 0 € Ko’ s.t. P(a) — 0.
Transcendental element: Tf such a P does not exist then a is transcendental.
Consider the following definitions,

* Denote the smallest subfield of L containing & and a to be & ().

* Denote the smallest sub ring of L containing & and a to be & al.

The following statements are equivalent,

o cvis algebraic over K.

« Klo] is finite dimensional algebra over K.

o Kla = K(a).

Algebraic extension: L is called algebraic over & if all a ¢ L are algebraic
over K.

o 1f L is algebraic over K then any K-subalgebra of I, is a field.

* Consider K ¢ L ¢ M. € M is algebraic over K, then it is alge-
braic over L, also its minimal polynomial over L divides its minimal
polynomial over K.

o Tf K I = M then M is an algebraic extension over K «— M is
algebraic over L and L is algebraic over K.

Algebraic closure of L over K: A subfield I/ of L st. I/ = {a € L |
« is algebraic over K}

Minimal Polynomial

If o is an algebraic clement then =! monic polynomial £ of minimal degree
such that #(a) — 0 such a polynomial is called the minimal polynomial.

o The minimal polynomial is irreducible

« Any other polynomial @ 5.t. Q(a) = 0 will be divisible by P.

positive degree and the ged of its coefficients is 1.
Gauss’ lemma: A non-constant polynomial P & Z[X] is irreducible over
% .X| «— itis primitive and irreducible over (||

A polynomial f(z) — a,a" +a, 12"} + -+ + ag € Zla] is irreducible if Jp
prime s.t. p divides all coefficients except a, and p? does not divide ap.

ension

For a field extension K < L. L is called a finite extension of K if the vector
space of I over K has a finite dimension.
Degtee of finite extension: Denoted as [L : K] = dimx L
¢ K < L M. Then M is finite over K <= M is finite over Land L is
finite over K. Also in this case, [M : K] = [M : L][L : K].
o Let K(ay,. .- a,) C L denote the smallest subficld of L containing &
and o, € L. This K(an.....cv) is generated by o, ... c
o Iis finite over K <= 1. is generated by a finite number of algebraic
elements over K .
* [K(e): K| — deg Py (e K)

Tet P € K[X] be an irreducible monic polynomial. A field extension 7 is
called a stem field of P if 3o < E, s.t. «vis a oot of P and E = Ko
o If £, 1 arc two stem ficlds for £ ¢ Kla|, st £ = Kla], ' = K|o]
where o, ' are roots of £, Then ! isomorphism & ~ £ of K-algebras
which maps e to .
If a stem field contains two roots of P, then =! automorphism that maps
one root to another.
o 1f Bisastem field, [£: K] deg £
If[££: K = dog £ and £ contains a root of £ then £ is a stem ficld.
Some irreducibility criteria,
o P < K[X]is irreducible over K <= it does not have roots in L/ K of
degree < deg P/2.
+ P K|X|is irreducible over K with deg P — n. I L/K with L : K] —
mif ged(m.n) — 1 then P is irreducible over L.

Splitting field

Let P € K X]. The splitting field of P over K is an extension of I where P is
split into linear factors and the roots of I’ generate L (alternatively if I cannot
be factored into any intermediate field smaller than L).
« Splitting field L exists and its degree is < d!, where d — deg P. And it is
unique up to isomorphism as K —algebras.
« Degree of the splitting field divides dl.

Algebraic closure

o A field K is algebraically closed if any non-constant polynomial P
K[X] has aroot in K.

* L is called an algebraic closure of X if it is algcbraically closed and an
algebraic extension over .

* Every field has an algebraic closure.

+ Algebraic closures of K are unique up to isomorphism as K —algebras.

Introductory Galois Theory Cheat Sheet

of finite field:

Proper

Let p be a prime integer and let ¢ — p” for some positive integer . Then the
following statements hold.

There exists a field of order ¢.

« Any two fields of order ¢ are isomorphic.

Let K be a field of order ¢. The multiplicative group K * of non-zero
clements of X is a cyclic group of order ¢ 1.

Let K be a field of order ¢. The elements of & are the toots of 29— « ¢
Fylal.

A field of order p contai field of order p* < kv

The itreducible factors of 29 —  over I, are the irreducible polynomials
in [, |] whose degree divides .

The splitting ficld of 27« has ¢ clements.

T, is a stem field and a splitting field of any irreducible polynomial
P € F, of degree r.

Frobenius homomorphism

Let K be a field, ch(K) — p > 0. There exists a homomorphism ¢ : K — K,
s.t. p(xr) — 2. This is the Frobenius homomorphism.
* The group of automorphisms over F, over B, is cyclic and is generated
by the Frobenius map.

Separable polynomial: An irreducible polynomial P € K X] is called
separable if ged(P, ) = 1, i.e. it has distinet roots.
Degree of separability: deg,,,,  — deg Q for some P(X) — Q (X*)
Degree of inseparability: dog, P — §%7
Purely inseparable polynomial: P is purely inseparable if deg, P —
deg P Also if P is purely inseparable P = X# —a
Separable element: If L/ is an algebraic extension, then o
called separable if its minimal polynomial over K is separable. And
vice vers
If & ¢ K is separable then [Hom(K(0). K)|  deg Piu(a, K))
Separable degree: For /K, we have [L : K]y — [Romp(K(n), K-
Tnseparable degree is degree of extension divided by separable degree.
Separable extension: L is separable over K if |L : Kl — L : K|

- 1f () — 0 then any extension of K is separable.

- Lfch{K) = p then pure inseparable extension has degree p” with

degree of inseparability p~

Separable degrees obey the multiplicative property.
TFAE for finite L/ K

- Lisseparable over i

- Any clement of L is scparable over
), where each a is separable over K.
), then o, is separable over K (a
separable over K} forx

o)

Multilinear map

Tiora module M over ring A. A function L from M” = 8 x M x --- x M into
—_

.
Ais called multilinear if L(cvy, . .., ev,) is linear as a function of each a; when

the other o are fixed.
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product
Consider a ring A and two A—modules, 47, N. The tensor product is denoted
as M @4 N and is an A-module along with a A—bilinear map,

©:M x N + M %4 N which satisfics a “universal property”.

Universal property of tensor product:

ToraA module £, if foran A bilincar map, f : 4 x N > £, then 4! homo-
morphism f of A—modules s.t. f = fo

MxN —2 5 M N
5 |
»
* Commutativity of tensor product M @4 N 2 N xq M
o Amg MR

« The basis for the tensor product of free modules is the tensor product of
their individual basis elements.

The tensor product is associative.

Base change theorem: For a ring A, B an A—algebra, M an A—module and
N a B module. Then we have the following bijection

Hom (M, N}  Homp(B ©4 M, N)

« For T anideal of a ring A and M an A—module we have, A/T
MM

M=

Chinese remainder theorem

Comaximal ideals: Two ideals of a ring are called comaximal (or coprime) if
their sum gives the ring itself.

® 1f 1. J are comaximal then I.J — I ()J

© 11;..... I comaximal w.rt J then [[X_, I, is also comaximal with .J.

® If /..J are comaximal then so are /™, .J" for any m, n.
Chinese remainder theorem: For a ring A, consider two comaximal ideals
I.J,thenVa,be R, lr € A = a(mod!) and & = h(mod.J)
Generalized Chinese remainder theorem: For a ring 4, let I,.... I, be ide-
als of the ring A. Consider the map 7 : A —+ A/l x -~ x A/l, defined as
a(a) = (e mod I,. wod I,). Then kerw = Iy ﬂ-' mzﬂ, i.e. it is surjec-
tive iff Iy, - -+ I, are pairwise comaximal. If  is a surjection we have,

A=Az Tcarn

Let Abe a finite K —algebra then,
o There are only finitely many maximal ideals in A.
« For finitely many maximal ideals m;. Lot J — ()
J" — 0 for some 7.
o A A/mI X x Ajmi for some (not necessarily unique) 1. ..., 7.
Reduced K-Algebra: If it has no nilpotent elements.
Local ring: If it has only one maximal ideal. A non 7ero ting in which every
element is either a uit or nilpotent is local.

e Then

Let L be a finite extension over K then the following hold,

Lis separable <= L % K is reduced.

Lis purcly inscparable <= L sy K is local.

Lis separable <= ¥ algebraic extensions i Qs reduced.

L is purely separable < ' algebraic exfeusmm O.L sk Qs local.

o If L is separable then the map ¢ : L xx K — K" defined as o(/ k) —
(kg1{D), .., kipa(l)) (where ¢, are distinct homomorphisms from L to
K), is an isomorphism.

* Let I be a finite separable extension of K then it has only finitely many
intermediate extensions.

e

There exists o © L s.t. L = K{a) whenever £ is finite and separable.

A normal extension of K is an algebraic extension which is a sphitting field
of a family of polynomials in | X].
TFAE for an extension I of K,
* Y & L, Byl i) splits in L.
* [.is anormal extension.
+ All homomorphisms from L to K have the same image.
« The group of automorphisms, Aut(Z/K) acts transitively on
Homy (LK),
Some properties of normal extensions,
* K Lo M,if M isnormal over K then it is normal over L, but L need
not be normal over .
« Extensions with degree 2 are normal.

Galois extensions

An algebraic extension that is both normal and separable is called a Galois
extension.
o For a finite extension L over K the number of automorphisms
|Aut{L/K) < [L: K]. Equality holds iff L is a Galois’ extension.
1f L is normal over K then,
« Tsomorphism of sub extensions extend to automorphisms of 7.
o Aut(L/K) acts transitively on the roots of any irreducible polynomial
in K[X].
« If Aw(L/K) fixes # # K. Then 2 is purely inseparable.

al

group:

Tf I is a Galois extension, G = Gal(L/K) = Aut(L/K) is called the Galois
group of the exicnsion.
o [GalL/K) — [ (ie. the set of mvariants in L with the action of the
Galois group is equal to K).
o Let L.be a field and G a subgroup of Aut(L), then
— Tf all orbits of & are finite, then L is a Galois extension of L¢.
— Tf order of G is finite then, [ : L] — |G| and G is a Galois group.

The Fundamental theorem of Galois theory

Let L/K be a Calois extension, and Aut(L/K) — Cal(L/K) is its Galois
group.
o Tf L is finite over K, then for a intermediate field F and a subgroup
H < Gal(L/K) we have the following correspondence,
- F = CGal(L/F)
- LM
o Fis Galois over K <«
Gal(L/ 1) = Gal(L/K)

g(F) — F, ¥g € Cal(L/K) <>

Tor a polynomial # with roots z;, the discriminant is A — ||
For Gal(P) C &,. For a separable polynomial,

+ As preserved by any permutation.

o Ais preserved d only by even permutations

s 0cA, = VAeK

e

Let P, = X" lwhere p- nif ch(K) = p > 0.
Pn has  distinct roots which form a cyclic multiplicative subgnoup sin =
Let s, * denote the sct of primitive n*? roots of unity (no roots of dcgrcc <n).
o x| = w(n)
Cyclotomic polynomials: &,, = ]
o Byl b
* B, has coefficients in prime fields.
« If ch(K) — O then ®,, ¢ Z[X], else if ch(K) — p, we have @, is the
reduction mod p of the n* cyclotomic polynomial over Z.
« Ifch(K) — 0, then &, is irreducible over Z[X].
Consider L, splitting field of K
« The splitting field of F, over K is J¢(¢) where ¢ is a root of ®,,.
© Allg e Gal(L/K) acts as ¢ = ¢, (a%,n) = 1.
 Cal(L/K) injects into Z/nZ* and this is an isomorphism when &, is
irreducible over K.

e (X =) € RIX

Kummer extensions

A field extension L/K is called a Kummer extension if for some integer n > 1
* K contains n distinct n®* roots of unity.
« Gal(L/K) is abelian group with Tem of the orders of group elements

(exponent ) equal to 7.

Consider K s.t. for some 7. (ch{K).n) = 1 and X" — 1 splits in K, for any

K take d — min{i | /" & K} then we have,

o d|nand Pyin(ali™) = X4 — gdin

 K(a'/") is Galois extension with cyelic Galois group of order d.

The converse is also true.

At
Tet L,/ K be a field extension s.t. ch(K) — p for prime p. It is called Artin-
Schreier extension if degree of extension L is p.

Artin-Schreier theorem: Let ch(/) pandlet? = X» X a¢ K|X|.Then
P is either irreducible or splits in K. Let o be a root of P,

is irreducible, then K (@) is a cyclic extension (i.c. Galois group is
yelic) of K of degree p.

« Any cyclic extension of degree p is obtained in the same way.

hreier extensions

Composite extensions

Let L,. Ly be two intermediate extensions of & and some L/ that contains
them both. Then T La = LoLy = K(Ly|J L) the smallest extension that
contains both Ly, L, is called composite extension.
* Tf Iy and I, ate separable/purely inseparable/normal/finite over K-
then its composite field also possess that property.
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TEAL for algebraic extensions,
o Ly @k Lyisaficld.
L, %k Ly — Lis an injection.
+ A linearly independent set in L, is also linearly independent in L.
* For linearly independent sets (over K) 4 € Ly, B € Ly we have A x B
is lincarly independent over K
Ly, Ly satistying these properties are called linearly disjoint extensions.
o Ifdeg Ly is finite then [LyL < L = [Ly : K] cquivalently [L1Ly : K] =
Ly K][La: K]
« lixtensions which are relatively prime degrees are linearly disjoint.
For K the algebraic closure of X,
o Let Ly, Ly < K, if L, is Galois over K and let K* — L, ( Ls. Then L, L,
is Galois over Ly. The map ¢ : g — g|u, of Gal(LyLs/Ly) — Cal(L/K)
s injective with image Clal(L1/K") and Ly, L, linearly disjoint over 4.

Solvable extensions and polynom

Solvable extension: A finite extension E of K is solvable by radicals if
e, -+, generating F such that ol € K(a o 1) for some n,.
Solvable polynomials: I’ ¢ K[X]is solvable by radicals if 3 a solvable exten-
sion B/ containing its roots.
* A composite of solvable extensions is solvable.
* For finite L/K solvable — 7 finite Galois extension also solvable
when ¢h(K) = 0.

Solvable groups

A group G is called solvable if it has a finite sequence of normal subgroups,
(I=Gy<9G 996G, = G)and also Gy 1/G, is abelian.

Subgroups of solvable groups are solvable.

* If G'is solvable and H <1 G then G/ H is solvable.

If G if a finite abelian group then G is solvable

Sy is not solvable for n > 5.

Solvability by radicals

Let £ ¢ K[X], ch(K) = 0. £ is a polynomial solvable by radicals iff Gal(#) is
solvable. Here Gal( P) — Gal(#/K), where # is a splitting ficld of £ over &.

Abel

General polynomials of degtee 1 > 5 are not solvable by radicals since S, for
n > B is not solvable.

uffini theorem

Group representations

For vector space V, a representation of a finite group ¢ is a homomorphism
¢ : (' GL(V), where GL(V) is the group of automorphisms of V.
Regular representation: Lor vector space V gencrated by clements of group
€. A homomorphism involving permuting this basis is called regular.
* For L/K as a vector space over K we have a representation of the Galois
group ¢ : Gal(L/K) > GLi(L). This is a regular representation.,

-

Normal basis theorem

For L/ K a finite Galois extension, J € /K s.t. {g | ¢ € G} is a K—basis of
L

Integral elements: lor a integral domain A and 13 an extension ring of A. An
clement a ¢ B3 is said to be integral over A if  is the root of a monic polyno-
mial in A[X".
TFAL,

o s integral over A.

+ Ala] is a finitely gencrated A4 module.

* Ala] € € ¢ B where (s a finitely generated A module.
-

Field Norm and Tra

Let K — E be a separable field extension, for a € K its field norm is defined

a8 Ny i (o) = [1,,,. 7 7:( ). The trace (Tr) is the same with sum instead.

« Norm is multiplicative, trace is additive and i—linear.

oI E = K(a), Ngjg = (—DI7FF(Constant coeff of Prin(cr, K)),
Trg (o) = —(Coefficient of X [#K1-1)

e Yoratower K ¢ F ¢ £, Ngje — NeyrcoNpyr, Teeyw — Lo Tip .

* T:ExE— Kas (x,y) — Tr(z,y) is a non-degenerate K —bilinear.

* If o is integral over Z. Then Ngq(a). Trg,o() are integers.

osure:

Integral

Integral extension: For A _ B, B is said to be an integral extension of A if
every element of B is an integral element over A.
* A B Cif Bis integral over A and (' integral over B — C'is
integral over A.
* B is finitely generated over 4 as a module <= B = Aloy,... ]
where each o is integral over A.
« Elements of B integral over A forms a subring of 5. This is the integral
closurc of Ain B.
Integrally closed: A is integrally closed in B if the integral closure of A in B
is same as A. In general A is integrally closed if A is integrally closed in its
field of fractions.
« Zis integrally closed.
« Any UFD is integrally closed.
Let K be a Number field, the integral closure of Z in K is Ok the ring of
integers.
* Yo € K, there exists € Z* such that do € Ok
* a0 = Prin(e, Q) € Z|X|.
* O is a finitely generated, free Z—module of rank 1 = |

Reduction modulo prime

Let P £ Z[X| be an irreducible polynomial, and X its splitting field over ¢J.
With [ : @ — n. Let ¢ — Gal{F). Let ay, ... ay, be roots of F. Consider
A — Og and let J; be all the maximal ideals of A containing some
prime p. Consider D; © G, D; = {g ¢ G | gJ; — J;} and let k; — A/ J;. There
exists a natural homomorphism D; — Gal(k;, F,,)
We then have the following,
* (i acts transitively on {Ji....,.J,} and D; maps surjectively into
Cal(k; /F,).
* If reduction P = P mod p does not have multiple roots then the map
D; ¢+ Gal(k;/IF,) is a bijection and 4, is a splitting field of P for some i.
Example: If for P € Z X| is irreducible and 3 prime p such that P = P mod p
is also irreducible. Then we have that Gal(/?} contains an n—cycle permuta-
tion.
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