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Symbols
Symbol Name / Definition \ Symbol Name / Definition
Ro, R
Empty set, set with no members 0 T30 Rotation
Riso, R270

N Natural numbers R360/n Cyclic Rotation

Z Integers (Zahlen) H,V, D, D’ | Flip (horizontal, vertical, diagonal)

Q Rational numbers (a) The set {a" | n € Z} under o (na if +)

-1

R Real numbers ‘g g] 2x2 Matrix Inverse

C Complex numbers Zy Group of integers modulo n

F* Nonzero Field Zy Z, where p a prime

c Is a subset of mod Modulus arithmetic

General Linear Group of 2x2
Is an element of GL(2, F . )

€ (2, F) matrices over the field F

00 Infinity g" The group operation on g n times

° Degrees |G| Order of a Group
<, %2 Inequalities lg| Order of an Element

o, Multiply ged (a, b) | Greatest Common Divisor

+ Division lcm (3, b) | Least Common Multiple
alb a divides b

al Inverse
<tab>
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Ch. 0: Preliminaries

Definition Description

Well Ordering Principle

Every nonempty set of positive integers contains a smallest
member.

Theorem 0.1:
Division Algorithm

Let a and b be integers with b > 0.

Then there exist unique integers q and r with the property that
a=bqg+r,where0<r<hb.

Example: For a=17 and b = 5, the division algorithm gives 17 =5 - 3
+2.Hereg=3andr=2.

Greatest Common Divisor
(GCD)

min{ay,B1} _ min{azB2}

ged (x,y) =p; 2

Largest positive integer that is a factor of both x and y.
Think Intersection (M) of a;, £;.

pl"(nin{“krﬁk}

The greatest common divisor of two nonzero integers a and b is the
largest of all common divisors of a and b. We denote this integer by
ged (a, b).

Relatively Prime Integers

When gcd (a, b) = 1, we say a and b are relatively prime.

Theorem 0.2:
GCD Is a Linear
Combination

For any nonzero integers a and b, there exist integers s and t such
that gcd (a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive
integer of the form as + bt.

Corollary

If a and b are relatively prime, then there exist integers s and t such
that as + bt = 1.

Example: gcd (4, 15) = 1 where 4 and 15 are relatively prime and 4 -
4 +15(-1)=1.

Euclid’s Lemma
p | abimpliesp|aorp|b

If p is a prime that divides ab, then p divides a or p divides b.

Theorem 0.3:
Fundamental Theorem of
Arithmetic

Every integer greater than 1 is a prime or a product of primes.

This product is unique, except for the order in which the factors
appear.

That is, if n = p1p2... prand n = q10z... gs, where the p’s and q’s are
primes, then r = s and, after renumbering the q’s, we have p; = q;i for
alli.

Least Common Multiple
(LCM)

max{ay,f1}  max{as,Ba}

lem (x,y) = p, P2
Smallest positive integer that is an integer multiple of both x and y.
Think Union (U) of a;, ;.

plinax{akﬁk}

The least common multiple of two nonzero integers a and b is the
smallest positive integer that is a multiple of both a and b.

We will denote this integer by Icm (a, b).

Example: Icm (4, 6) =12

Computingabmodnor(a+
b) mod n

Let n be a fixed positive integer greater than 1. famodn=2a"and b
mod n = b’, then

(@a+b)modn=(a’+b’)modn

(ab) mod n = (a’b’) mod n
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A logic gate is a device that accepts as inputs two possible states
(on or off) and produces one output (on or off). This can be
conveniently modeled using 0 and 1 and modulo 2 arithmetic.

Logic Gates XxANDy Xy
xORy X+Yy+Xy
X XORy X+y

MAJ(x, y, z) XZ + Xy +yz.

1. Closure under addition:
(@a+bi)+(c+di)=(a+c)+(b+d)i
2. Closure under multiplication:
(a + bi) (c + di) = (ac) + (ad)i + (bc)i + (bd)i?
= (ac - bd) + (ad + bc)i
3. Closure under division (c + di # 0):
(a + bi) (a + bi) (c— di)
(c +d) (c +d) (c— dd

_ (ac +bd) + (bc — ad)i
B c? + d?

_ (ac+bd) (bc—ad) .

- T2 2 2 2
Theorem 0.4: . . cc+d c‘+d
4. Complex conjugation:

(a + bi) (a - bi) = a% + b?

Properties of Complex

Numbers
5. Inverses:
For every nonzero complex number a + bi there is a
complex number c + di such that (a + bi) (c + di) = 1 (That is,
(a + bi)* exists in C).
6. Powers:
For every complex number a + bi = r(cos 8 + i sin 8 ) and
every positive integer n, we have
(a + bi)" =(r(cos B +isin B))" =r" (cos nB + i sin nB).
7. n"-roots of a + bi:
For any positive integer n the n distinct n' roots of a + bi =
r(cos B +isin B) are
Vr (cos# +i sinw)
fork=0,1, .. n-1.
Theorem 0.5: Let S be a set of integers containing a. Suppose S has the property

that whenever some integer n 2 a belongs to S, then the integer n +

First Principle of . .
P 1 also belongs to S. Then, S contains every integer greater than or

Mathematical Induction

equal to a.
DeMoivre’s Theorem (cos B +isin B)"=(cos nB +isin nb)
Theorem 0.6:
Second Principle of Let S be a set of integers containing a. Suppose S has the property
Mathematical Induction that n belongs to S whenever every integer less than n and greater

than or equal to a belongs to S. Then, S contains every integer
greater than or equal to a.
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Equivalence Relation

An equivalence relation on a set S is a set R of ordered pairs of
elements of S such that

1.(a,a) ERforalla€s (reflexive property).
2. (a, b) € Rimplies (b, a) €ER (symmetric property).
3.(a, b) €Rand (b, c) € R imply (a, c) € R (transitive property).
NOTE: It is customary to write aRb instead of (a, b) € R.

Theorem 0.7:
Equivalence Classes
Partition

The equivalence classes of an equivalence relation on a set S
constitute a partition of S. Conversely, for any partition P of S, there
is an equivalence relation on S whose equivalence classes are the
elements of P.

Function (Mapping)

A function (or mapping) f from a set A to a set B is a rule that
assigns to each element a of A exactly one element b of B. The set A
is called the domain of f, and B is called the range of f. If f assigns b
to a, then b is called the image of a under f. The subset of B
comprising all the images of elements of A is called the image of A
under f.

Composition of Functions

Let f: A— Band g: B — C. The composition gf is the mapping from
A to C defined by (gf)(a) = g(f(a)) for alla in A.

(f o g)(x) = f(g(x))

One-to-One Function

A function f from a set A is called one-to-one if for every a1, a; € A,
f(a1) = f(az) implies a; = as.

e pla)

>~ @ 9(a,)

i 15 one-to-one
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Function from A onto B

A function f from a set A to a set B is said to be onto B if each
element of B is the image of at least one element of A. In symbols,
f: A — Bis onto if for each b in B there is at least one a in A such
that f(a) = b.

@ 1s onto

Theorem 0.8:
Properties of Functions

Given functions f: A— B, g: B — C, and h: C — D, then

1. h(gf) = (hg)f (associativity).

2. If f and g are one-to-one, then gf is one-to-one.

3. If f and g are onto, then gf is onto.

4. If f is one-to-one and onto, then there is a function f* from B
onto A such that (ff)(f) = ffor all fin A and (ff)(g) = g for all g in B.

Domain  Range Rule One-to-One Onto
y A y A x—=x Yes No
R R x—=x Yes Yes
V/ N x = Ixl No Yes
Z Z, x—x? No No

Cancellation Property

Suppose f, g, and h are functions. If fh = gh and h is one-to-one and
onto, thenf=g.
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Ch. 1: Introduction to Groups

Definition Description

Abelian Commutative (ab = ba)

Named after Niels Abel, Norwegian mathematician.
Non-Abelian Not commutative (ab # ba)

Dn = dihedral group of order 2n.

Dihedral = having or contained by two plane faces.
Examples: D3, D4, Ds, Dg

Dn:
Dihedral Groups -
D4 (Square)
Du: The eight motions R, Reo, Riso, R270, H, V, D, and D’, together with
4.

the operation composition, form a mathematical system called the
dihedral group of order 8 (the order of a group is the number of
elements it contains). It is denoted by Da.

Operations table. All elements in the rows and columns, filled in
Cayley Table with the operation results.

Named after Arthur Cayley, English mathematician.

<Rss0/n>

Many objects and figures have rotational symmetry but not
reflective symmetry.

A symmetry group consisting of the rotational symmetries of 0°,
360°/n, 2(360°)/n, ..., (n - 1)360°/n, and no other symmetries.

Dihedral Group of Order 8

Cyclic Rotation Group of
Order n
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Ch. 2: Groups

Theorem / Definition Description

Binary Operation

Let G be a set. A binary operation on G is a function that assigns
each ordered pair of elements of G an element of G.
(Closure)

Group

Let G be a set together with a binary operation (usually called

multiplication) that assigns to each ordered pair (a, b) of elements
of G an element in G (closure) denoted by ab. We say G is a group
under this operation if the following three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c = a(bc)
foralla, b, cin G.

2. Identity. There is an element e (called the identity) in G such that
ae=ea=aforallainG.

3. Inverses. For each element a in G, there is an element b in G
(called an inverse of a) such that ab =ba =e.

Algebraic Systems

Sets with one or more binary operations.

The goal of abstract algebra is to discover truths about algebraic
systems that are independent of the specific nature of the
operations.

Abstract Algebra All one knows or needs to know is that these operations, whatever
they may be, have certain properties.
We then seek to deduce consequences of these properties.
General Linear Group of 2x2 matrices over the field F.
GL(2, F) .
Non-Abelian.
Special Linear Group of 2x2 matrices over the field F with
SL(2, F) . .
determinant 1. Non-Abelian.
Group of integers modulo n.
Zn Z,={0,1,...,n-1}forn>1.
Implies the operation of addition.
The set of all positive integers less than n and relatively prime to n
U(n) under the operation of multiplication modulo n.

U(n)={a€Z,|a<nandgcd(a, n)=1}.
If nis a prime, then U(n)={0, 1, ..., n- 1}.

U(n) Examples

u(2) =11, 2} prime
u3)=11, 2, 3} prime
u(4) =11, 3}

U(5) =11, 2, 3, 4} prime
u(e) =11, 3, 5}
U(7)=11,2,3,4,5,6} prime

u(8)=11,3,5,7}

U(10) = {1, 3, 7, 9}

U(15)={1, 2, 4, 7, 8, 11, 13, 14}
U(18) ={1, 5, 7, 11, 13, 17}
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Theorem 2.1:

. . Inagr , there is only one identity element.
Uniqueness of the Identity 3 group G, there is only one identity eleme

Theorem 2.2: In a group G, the right and left cancellation laws hold; that is, ba =
Cancellation ca implies b = ¢, and ab = acimplies b = c.

Theorem 2.3: For each element ain a group G, there is a unique element b in G
Uniqueness of Inverses such thatab=ba=e.

Product: gggg ... g (n factors)
Sum: g+g+g+g+...+g (n factors)

g g° = e or identity

If g is negative: g" = (g*)!"

ae borab Multiplication

eorl Identity or one
Multiplicative Group at Multiplicative inverse of a

a" Power of a

ab? Quotient

a+b Addition

0 Identity or zero
Additive Group -a Additive inverse of a

na Multiple of a

a-b Difference

Theorem 2.4:

F [ 1= plgl
Socks—Shoes Property or group elements a and b, (ab)™* =b™a

k=gn+rwithO<r<n.

Division Algorithm . . . .
g g is the quotient; r is the remainder.
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Table 21 Summary of Group Examples (F can be any of @, R, €, or Z,; Lis a reflection)

Form of
Group Operation Identity Element Inverse Abelian
Z Addition 0 k -k Yes
o Multiplication 1 mn, n/m Yes
m,n=0

Z Addition mod n 0 k n—k Yes
R* Multiplication | x 1/ Yes
C* Multiplication | a+ bi = l b*a -2 i e bi Yes
GL(2, F) Matrix 10 a b d -b

multiplication |:ﬂ | ] L- d ] ad = be  ad = be

' No
- il
ad — be # 0 ad = be  ad = be

Uin) Multiplication | k. Solution to Yes

mod n gedik, n) = | kxmodn =1
R" Componentwise (0,0, ....0)  (a,, a5 ...,a,) (=a,, —a, ..., —a,) Yes

addition
SLi2, F)  Martrix 1 0 a b d —=h No

multiplication [ﬂ 1] [ & d]_ [_r “]

ad — be = |

D, Composition R, R,.L Ry L No
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Ch. 3: Finite Groups; Subgroups

Axiom / Theorem /
Lemma / Definition

Order of a Group (|G])

Description

The number of elements of a group (finite or infinite) is called its
order. We will use |G| to denote the order of G.

Order of an Element (|g])

The order of an element g in a group G is the smallest positive
integer n such that g"=e.

(In additive notation, this would be ng =0.)

If no such integer exists, we say that g has infinite order.

The order of an element g is denoted by |g].

If a subset H of a group G is itself a group under the operation of G,

Subgroup we say that H is a subgroup of G.
H<G
Proper Subgroup H < G means “H is a proper subgroup of G”.

Trivial Subgroup

The trivial subgroup of any group is the subgroup {e} consisting of
just the identity element.

Modular Arithmetic

Google: To compute 13* mod 15, just type in the search box:
“13"4 mod 15”

Theorem 3.1:
One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If abtisin H
whenever a and b are in H, then H is a subgroup of G.

(In additive notation, if a - b is in H whenever a and b are in H, then
His a subgroup of G.)

1. Identify the property P that distinguishes the elements of H; that
is, identify a defining condition.

2. Prove that the identity has property P. (This verifies that H is
nonempty.)

3. Assume that two elements a and b have property P.

4. Use the assumption that a and b have property P to show that
ab! has property P.

Theorem 3.2:
Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If abisin H
whenever a and b are in H (H is closed under the operation), and a™*
is in H whenever aisin H (H is closed under taking inverses), then H
is a subgroup of G.

To guarantee that the subset is not a subgroup, show one:

Not a Subgroup 1. Show that the identity is not in the set.

2. Exhibit an element of the set whose inverse is not in the set.

3. Exhibit two elements of the set whose product is not in the set.
Theorem 3.3: Let H be a nonempty finite subset of a group G.

Finite Subgroup Test

If H is closed under the operation of G, then H is a subgroup of G.
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Cyclic Subgroup (a)

The subgroup (a) is called the cyclic subgroup of G generated by a.
(a) ={a" | n € Z} under multiplication
(a) ={na | n € Z} under addition

In the case that G = (a) = {a" | n € Z}, we say that G is cyclic and a is
a generator of G.

(a) Is a Subgroup

Cyclic Group Cyclic Group if there is an element a in G such that G={a" | n € Z}.
Element ‘a’ is called the generator.
A cyclic group may have many generators.

Theorem 3.4: Let G be a group, and let a be any element of G. Then, (a) is a

subgroup of G.
Use (a) or <a>.

(a) Examples

Under Addition:

(2)={0,2,4,6, .., 2n, ..}

(2)=172(8,14)={0, 2,4, .., 18}
(3)={0,3,6,9, .., 3n, ...}

U(10) = [1,3,7,9] = (3) = (7)
Zzs=(1)=(3)=(5)=(7)={0,1,2,3,4,5,6,7}

Under Multiplication:
(3)=1{3,9,7,1}={1, 3, 7,9} mod 10
(3) = {31, 32’ 33’ 34’ 35, 36} ={1,3,5,9, 11,13} mod 14

Center of a Group

The center, Z(G), of a group G is the subset of elements in G that
commute with every element of G. In symbols,

Z(G)={a € G | ax=xaforall xin G}.
[The German word for center is Zentrum]

Theorem 3.5:
Center Is a Subgroup

The center of a group G is a subgroup of G.

Centralizerofain G

Let a be a fixed element of a group G. The centralizer of a in G, C(a),
is the set of all elements in G that commute with a. In symbols,
Ca)={g€G | ga=ag}

Theorem 3.6:
C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.
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Ch. 4: Cyclic Groups

Axiom / Theorem / Lemma /
Definition

Cyclic Group

Description

If there is an elementain GsuchthatG=(a)={a" | n €
Z}. Element a is called the generator.

Theorem 4.1:
Criterion for ai = a

Let G be a group, and let a belong to G.

If a has infinite order, then a'= a’ if and only if i =j.

If a has finite order, say, n, then (a) = {e, a, a% ..., a" %}
and a' = al if and only if n divides into i — j evenly.

(IZ:;'c;IIIa(r;/)T. For any group element a, |a| = [{(3a)].

Corollary 2: Let G be a group and let a be an element of order nin G.
a“= e Implies That |a| Divides k If a¥ = e, then n divides k.

Corollary 3:

Relationship between |ab| and
lalIb]

If a and b belong to a finite group and ab = ba, then |ab|
divides |a| |b].

Implication of Theorem 4.1

Finite Case:

Multiplication in (a) is addition modulo n.

Example: If (i + j) mod n = k, then a'al = @k = gl i) medn,
Multiplication in (a) works the same as addition in Z,
whenever |a| =n.

Infinite Case:

Multiplication in (a) is addition.

Example: a'al = a'l.

Multiplication in (a) works the same as addition in Z.

Theorem 4.2:
(a*) = (a%"Y) and |a*| = n/gcd (n, k)

Let a be an element of finite order nin a group and let k
be a positive integer.

Then (a) = (a8«d(nk)

and |a*| = n/gcd (n, k).

The greatest common divisor (GCD) of two nonzero
integers a and b is the greatest positive integer d such
that d is a divisor of both a and b.

Corollary 1:
Orders of Elements in Finite Cyclic
Groups

In a finite cyclic group, the order of an element divides
the order of the group.

Corollary 2: Let [a] =n.
N C : : , Then (a') = (a) if and only if ged (n, i) = ged (n, j),
N = J " = j : '
Criterion for (a) = (@) and [a'| = || and |a'| = |a)| if and only if ged (n, i) = ged (n, j).
Let |a] =n.
Corollary 3: Then (a) = (') if and only if ged (n, j) = 1,

Generators of Finite Cyclic Groups

and |a| = |(a')| if and only if gcd (n, j) = 1.
NOTE: gcd (n, j) = 1 means n and j are relatively prime.

Corollary 4:
Generators of Z,

An integer k in Z, is a generator of Z, if and only if gcd(n,
k) =1.
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Theorem 4.3:
Fundamental Theorem of Cyclic
Groups

Every subgroup of a cyclic group is cyclic.

Moreover, if |{a)| = n, then the order of any subgroup of
(a) is a divisor of n;

and, for each positive divisor k of n, the group (a) has
exactly one subgroup of order k — namely, (a"/).

For each positive divisor k of n, the set (n/k) is the unique

Corollary: subgroup of Z, of order k; moreover, these are the only
Subgroups of Z,

subgroups of Z,.
Theorem 4.4:

Number of Elements of Each Order in
a Cyclic Group

If d is a positive divisor of n, the number of elements of
order d in a cyclic group of order n is ¢(d).

Corollary:
Number of Elements of Order d in a
Finite Group

In a finite group, the number of elements of order d is a
multiple of ¢(d).
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Ch. 5: Permutation Groups

Axiom / Theorem /
Lemma / Definition

Description
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Ch. 6: Isomorphisms

Axiom / Theorem /
Lemma / Definition

Description
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Ch. 7: Cosets and Lagrange’s Theorem

Axiom / Theorem /
Lemma / Definition

Description

Note: Skip Ch. 8
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Ch. 9: Normal Subgroups and Factor Groups

Axiom / Theorem /
Lemma / Definition

Description
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Ch. 10: Group Homomorphisms

Axiom / Theorem /
Lemma / Definition

Description
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Ch. 11: Fundamental Theorem of Finite Abelian Groups

Axiom / Theorem / Description

Lemma / Definition
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Ch. 12: Introduction to Rings

Axiom / Theorem /

Description

Lemma / Definition

College Course
e SNHU MAT 470 - Real Analysis, The Real Numbers and Real Analysis, Ethan D. Bloch, Springer
New York, 2011.

References
e Bhoris Dhanjal, Bhorice2099 on Reddit (2020, 17 December). Imgur, Intro Group Theory Cheat
Sheet. Overleaf Source Document. See textbook Part 2: Groups.

e Bhoris Dhanjal, Bhorice2099 on Reddit (2021, 20 March). Imgur, Intro Ring and Field Theory
Cheat Sheet. Overleaf Source Document. See textbook Part 3: Rings and Part 4: Fields.

e Bhoris Dhanjal, Bhorice2099 on Reddit (2021, 28 December). Imgur, Intro Galois Theory Cheat
Sheet. Github Source Document. See textbook Ch 32: An Introduction to Galois Theory.
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Intro Group Theory Cheat

Group Axioms

A proup is an ordered pair (G, *) where G is a set and * is a binary operation
on G satisfying the following axioms:

i. Closure: ¥ a,be G,a*b,isalsoin G

ii. Associativity: (a*b)*c=a*(b*c),¥a,b,c: G

iii. Identity: e € G, called an identity of G,

st.7ar Cwehavea®c=c*a=a

iv Inverse va € G o ' £ G, calledaninverseof a, sk atn ' =a T ta-e

\

Some Properties of Groups

i. Abelian group A group Gis abelianifa*b=b*a¥a bc G

ii. Fimite group A group G is finite if the number of elements in G are finite
iii. Cancellation property supposcthata*b=a*c,¥a,b,cc G, = b=<¢

v, Uniqueness of Inverse and Tdentity

¢ The identity of G is unique

*Yac G, alis uniquely determined

e(a ') '=avacsq

e faxb)h =671 & (a7t

e for any @y, a0, ...ay € G the value of ay * as * = a,; is independent of how
the expression is bracketed

..

Some Special Groups

i. Dihedral Group (1}, or 33,)} is a group of symmetries of a n-sided regular
polygon. Order = 2n

ii. Symmetric Group (5,,} is the group whose clements are all the bijections
from the set to itself.

Order = n!

iii, Klein-4 Group (K or V) is a group with 4 elements in which each ele-
ment is a self inverse.

Homomorphisms and Isomorphisms

i. Homomorphisms

Let (G, *) and (H, o) be groups.
Amap: G+ I, s.loplo=y) — slic)o
phism.

ii. Isomorphism

For o : G — His called an isomorphism if:
i. ¢z is a homomorphism

ii. @ is a bijection

iy} ¥,y < (s called a homomor-

L —

Group Actions

A group action of a group G on a set A is a map from G x A to A satisfying
the following properties

i. Identity: ¢ -« — & and,

ii. Compatibility: g - (b x) = (gh) -

For a Group G. The subset H of G, is a Subgroup of G, Le. H < G it

i. H is non-empty

ii. H is closed under products and inverses

* A Normal subgroup N of G, {ie. N < G)Ufgng™ ¢« N¥g¢ Gandn< N,
The Subgroup Criterion

A subset H of group C is a subgroup of G iff

LHZED

ii yeHaey e H

5, Stabilizers and Kernels

ntralizers, Normaliz

¢ Centralizer of A in G is a subset of G defined as Cz(4) — {g € G| gay ' —
a¥ac A},

it is the set of all elements of C which commte with every element of A.

* Center of C is the subset of G defined as

Z(G)={9e G ge=ag¥reG},

it is the set of elements commrutating twith all the elements of G. Note, this is case
Z{G) = Cy(G)so Z(G) < G.

* Normalizer of A in G is defined as the set

No(A)={geG gAg~! = A} where,

gdg " = {gey ' ac A} Notethat Co(A) < Ng(d).

¢ Stabilizer on a set 5 with element s in G is defined as the set
Go—={ycCly-5s—s) Notethat Gy < G

* Kernel of G on 8 is defined as the set

Ker(f)—{gsClyg-s—sVseS)

Sheet

e Isomorphism Theorems

i. The First Isomorphism Theorem:

If: & » Hisahomemorphism of groups. Then ker ¢ < ¢ and,
Gilkerg = oG,

il. The Second Isomoprhism Theorem:

For a group G with, A, B < G and, 4 <1 N(B). Then AB < (.
B2ABAND A Aand, AB/BX A/ANE

iii. The Third Isomoprhism Theorem:

lior a group ¢ with, fi, K <1 ¢ and, I < K.
G~ il

Then K/H =0 G/H and,

A Group His Cyclicif 3 € Hst. H — (" ne Z)

For the above case we say H (r} and that F is generated by .
* A cyclic group can have more than one generater.

* All cyclic groups are abelian,

¢ If H — () then [H| — ||, if |[H| — n < oc thenx™ — 1

* Any two cvclic groups of the same order are isomorphie.

Two-Line to Cycle notation for permutations

12 3 4135 N . ary _ faghrs a4
905 4 3 1 — (125)(34) — (343{125} — (34)(512) — {15)(26)(34)

Here, the last form is a case of 2-cycle (transposition).

Parity of Permutations and Alternating Groups

The parity of any permutation o is given by the parity of the number of its
2-cycles (transpositions).

Alternating Groups:
An alternating group is the group of even permutations of a finite set of
length n. Itis denoted by A, it's order is %

Equivalence Classes and Orbits

+ If (7 is a group acting on the nen-empty set 4. Thene ~b < a —g- &
for some g « ¢. Where ~ is an equivalence relation.

* The orbit of (7 containing a is givenas O, — {g-0 5= G}

* The action of ( on 4 is called transitive if there is only one orbit.

* Conjugacy classes of G is the equivalence classes of G when it acts on itself
with conjfugation. i.e. gag Tye@

Cosets and Quotient Groups

Forany N < (Jand any g € &/

N—{gm|ne N} —{g.90,9h2... }and,
= {ng n & N} = {g.highag...} are called a left coset and a right
coset respectively.

Fora Group G and N = 7, the quotient group of Nin G (i.e. G/N), is the set
of cosets of N in G.

.

Class equations and Orbit-stabilizer Theorem

Class equation of a finite group ¢ is written as:
|Gl = Z(A)] 1 | Y {Conjugancy classes of G|
Oribit-stabilizer Theorem:

ior a group G acting on asct S, forany s ¢ S we have,

Os|Gs| = |&

Cayley’s Theorem

Cayley’s Theoren:
Every group is isomorphic to a subgroup of some symmetric group. If Gisa
group of order n, then C is isomoprhic to a subgroup of 5,

Lagrange’s Theorem and some results

Lagrange’s Theorem: For a finite group & and I < &,
+ The order of A divides the order of &, and,

¢ The number of left cosets of H in G equals ‘f.—}‘

Some important results

¢ If G 15 a finite group and « € G, then the order of & divides the order of &,
and 2! —eVzc &

+ If &7 is a group of prime order, then ¢ is cyclic

Ca

\

Automorphisms

Automorphism of & is defined as an isomorphism from & onto itself.
The set of all automorphisms of G is denoted by Aut(G)

y’'s Theorem

Cauchy’s Theorem: If G is a [inite group and p is a prime dividing |G| then
(7 has an element of order p.
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p-groups and Sylow p-groups

» p-group is defined as a group of order p* for some a > 1. Sub-groups of G
which are p-groups are called p-subgroups.

* Sylow p-group is defined as a group of order p®m, where p ~ e, a sub-
group of order p* is called a Sylow p-subgroup of &, Syl,(G) is the set of
Sylow p-subgroups of G.

-

The Sylow Theorems

i. The First Sylow Theoren:

If p divides |7], then G has a Sylow p-subgroup.

ii. The Second Sylow Theorem:

All Sylow p-subgroups of & arc conjugate to cach other for a fixed p.
iil. The Third Sylow Theorem:

ny, = 1{mod p), where ny, is the number of Sylow p-subgroups of G.
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Ring and Field Axioms

A ring R is a set with two binaty operations — and x satisfying the following
axioms:

i. (R, +) is an abelian group.

ii. Multiplicative associativity: (@ x b) x ¢ = x (b x e} Vu, b, € R.

iii. Left and right distributivity:

fa+b)xe—(axe)+Bxe)andax (b+c) — (axb)+(axc).

In addition to these rings may also have the following optional properties.
a. Multiplicative commutativity: a x 6 = b x o, Ya.b e R,

b. Multiplicative Identity: =1 ¢ Rst. Ya #0c R.lxa—ax1—a

¢. Multiplicative Inverse: Y a £0 < 2 _a ' c Rstaxat—atxa—1
FOR THE PURPOSE OF THIS SHEET WE LOOK AT RINGS WITH MUL-
TIPLICATIVE COMMUTATIVITY AND 1+#0.

A field £'is a set with two binary operations | and x satisfying the following
axioms:

i. (F,4) is an abelian group with identity 0.

ii. The non-zero elements of F form a abelian group under multiplication
with identity 1.

iii, Left and right distribubivity.

Polynomial Rings

For a ring R, R | denotes the polynomial ring of a single variable x s.t.the
elements of R[z] are of the form

A g oL +agwithn > 0anda, €

Polynomial rings can be generalized for multiple variables.

Zero Divisors, Units and Integral Domains

i. Zero Divisor: ¢ # 0 ¢ R is called a zero divisor of R Jb # 0 ¢ A st
either ah =) or be = (.
ii. Unit: For a ring F with identity 1 7 0, u £ R is called a unit in B if 3v ¢ K
stouvr = vn =1
iii, Integral Domain: A commutative ring with identity 1 & 015 called an
integral domain if it has no zero divisors.

* Any finite integral domain is a field.

* If R is an integral domain than the polynomial ring of ene variable over

R, ie. R[x]. is also a integral domain.

A subring of the ring R is defined as a subgroup of £ that is closed under
multiplication.

Ring Homomorphisms, Isomorphisms and Kernels

For rings It and S.
i. Ring Homomorphism is a map ¢ : B — S satisfying:
= cla+b) —pla) e Yabe R
o clab) =ple)p(hYabe R
ii. Isomorphism is a bijective ring homomorphism.
iii. Kernel of the ring homomerphism i is the set of clements of & that map
to 0in 5,
* Theimage of ¢ is a subring of 5.
+ The kernel of i is a subring of 8. (For Rings without 1)

Intro Ring and Field Theory Cheat Sheet
A X

Ideal: A subsct £ of ring R is called an ideal of R if
* Ttis a subring of 71,
¢ Ttis closed under both left and right multiplication with elements from
.
Hdeals are to rings what rormal subgroups are to groups.

Noetherian Rings

A commutative ring R is called Noetherian if there is no infinite increasing
chain of ideals in R, i.e. when I, © I, © Iy .. is an ascending chain of ideals
Ak e Zt st Iy = I, vk = m.

Tt is equivalent to say that ? is Noetherian if every ideal of I is finitely gen-
erated.

Quotient Rings -
Let 2 be a ving with ideal . 1t/ is called a quotient ring if
L+ +(s—Iy=(r—s=+1

i (r ) x (s + 1) —(rs)+14

First Isomorphism and Correspondence Theorem

i. First Isomorphism Theorem: Let ¢ : & — S be a ring homomorphism
from ring F to S ther:

* Kernel of 2 is an ideal of R,

* Image of i is a subring of 5 and,

* R ker g = p(RR).
ii. Correspondence Theorem: Let I? be a ring, and I be an ideal of .
The correspondence A «» A/ is an inclusion preserving bijection between
the set of subrings A of /¢ that contain / and the set of subrings of /1.
or
There exists an inclusion preserving biijection between ideals in B containing
ker(y} and ideals in (42},

Principal, Prime and Maximal Ideals

i. Principal ldeals: An ideal generated by a single element is called a princi-
pal ideal.

ii. Prime Ideals: If 7 # F, then an ideal I is called a prime ideal if
ab ¢ F,whena, b ¢ K then at least one of @ and b in an clement of 2. This s
analogous to Hre definition of prime numtbers in mumber theory

iii. Maximal Ideals: Tf A £ R, then an ideal M is called a maximal ideal if
the only ideals containing A are M and R itself.

o Lvery maximal ideal of R is a prime ideal.

o The ideal P is a prime ideal in R iff R/ P is an integral domain,

Zorn’s Lemma

If §1is any nonempty partially ordered set in which every chain has an upper
bound, then & has a maximal element.

Ring of Fractions of an Integral Domain

Tet 12 be an integral domain. Tet K be the ring of fractions of R s.t.
K —{#Ju.b € R.,b7 0} K isalso called a field of fractions since it always
forms a ticld for any ring £.

T P Y

e 2 ae
v W,b‘tlﬂ‘l’l

Chinese Remainder Theorem

The ideals F and .J of a ring 1 are said to be comaximal if / +.J — ft.

Chinese Remainder Theorem: %ol € I, 3 € N st
= a{mod I'}and = = h{mod .J)
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Hilbert Basis Theorem

Tf 1?is a noetherian ring then so is the polynomial ring R[],
Rlay. xe an| for finite v is alse noetherian.

Irreducible and Prime Elements

i. Trreducible Element An element o of ring 12 is called irreducible if it is
non-zero, not a unit and, enly hias frivial divisors (i.e. units and products of units).
il. Prime Element An clement a of ring # is called prime if it is non-zero, not
aunitand, if o | be then either o | bor a | ¢ forsome b.e € R.

The corcept of primes and irveducible is the same fn integers, but they are distinct in
general.

I an integral domain, coery prime clement Is frreducible, buf the converse holds
only in UFDs.

Norm and Euclidean Domain

i. Norm: For a integral domain £, any function N : £# + Z1 U0 with
N{0) = 0is called a norrm on R,

ii. Euclidean Domain: An integral domain 7 is called an Fuclidean Do-
main if there is a norm ¥ on R s.t. for any two elements a,b < R, where
b#0dg,r ¢ RAst.a=gb | rwherer =0o0r N(r) < N(b).

* Any field Fis a trivial example of a Buclidean Domain.

Principal Ideal Domains (PIDs)

A Principal Ideal Domain (PID) is an integral domain in which every ideal
is principal.

Every Euclideant Domain is a PID.

Examples:

oZ is a PID, but Z|x| is not.

oF[x] if F is a field, o 7[i]

Unique Factorisation Domains (UFDs)

Two elements a, b € 17 are said to be associates in ¥ if they differ by a unit,
ie. a — ub for some unit u ¢ K. A Unique Factorisation Domain (UFD) is
an integral domain R in which every nonzero element r ¢ R which is nota
unit fellows the properties:

i. v can we written as a finite product of irreducibles p, of R.

il. This decomposition is unique up to associates, Le. if r — pypa...p, and
T = q1¢2... 4, then m = n and for some renumbcering of factors there is pg
associate to g,

The above definition can be equivalently stated as:

A UL s any integral dommin i which every non-zero, non-invertible element hns
a unique factorisation.

sEvery PID is a UID.

e Z[x| is a UID, but not a PID.

eln a ULD every non-zere element is a prime iff it is irreducible,

# Fields © Fuclidean Domains < PTDs < UFDs C Integral Domains.
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Primitive Polynomials and Gauss” Lemma

A polynomial f(x) € Z[r] is called primitive if 1w = deg(f) > 0, ar, > Oand,
ged{ap, a1, ... 0,) = Lora;
Gauss’ Lemma: If f{z), g{x)

Z: ave primitive —> fg is also primitive.

The Eisenstein’s Criterion is a test for irreducibility of polynomials.

Let P be a prime ideal of the integral domain Ramd, f(z) = «™ Fi 4
-+ apw + ag be a polynorial in R,

Eisenstein’s Criterion states that f(x) is frreducible in R[x] if

®ay, 1, i, ap are elements of P and,

« i1y is not an element of P2,

1f Lisenstein’s Criterion doesn't divectly apply to f(x) try on fla+1), if fa+1) is irre-
ducible it implies f(x) is also irreducible.

Let 1 7 denote the identity of I,

The characteristic of a field I, denoted as ch(F') is defined as the smallest
integer p such that p - 1; — 0 if such a p exists and is defined as 0 otherwise.
& ch(}) is either 0 ora prime p, » @ and R have characteristic ()

« F}, = Z/p7: has characteristic p,

Splitting Fields

Splitting Fields: The extension ficld K of F is called a splitting field for the
polynomial [{x} ¢ £|z]if f{2} factors completely into linear factors in (||
but not over any proper subfield of ' containing £

s Forany field F, if f{x) € Flz]. Then, there exists an extension & of F which
is a splitting field for f{w).

o A splitting field of a polynomial of degree n over I' is of degree at most n!
over .

s Any two splitting ficlds for a polynomial f{x) ¢ F[z] over a field I are
isomorphic. e The polynomial 2" — 1 over 3 has in general a splitting field
contained in (.

o Let (3{¢,} be the cyclotomic field of n** roots of unity. [Q¢, @ Q] = #(n)
where ¢(n) is Euler’s totient function.

Algebraic Closure of Fields

e The field I is called an algebraic closure of F if ¥ is algebraic over I and,
if every polynomial f{x) ¢ F[z splits completely over £,

* A field X is said to be algebraically closed if every polynomial with coeffi-
cients in A has a root n K. F as defined above is algebraically closed.

= For every field F there exists an algebraically closed field K containing F.

Field Extensions and Degree

Tf K is a field containing the subfield F, then K is said to be an extension
field of F. Tt is denoted as K/ F.

The degree of a field extension K/ F denoted by 'K : 7] is the dimension of
K as a vector space over I\

Irreducible Polynomials in Fields

Fundamental Theorem of Algebra

The field C is algebraically closed.

Finite Fields

» For every prime p € W there exists a field T, of order y, .g.7 /47
« For any finite field I, the order of I'is ¢ — p" for some prime p and positive
integer 7.

e For a irreducible pelynomial p(x) € F, there exists a field K containing a
isomaorphic copy of Fin which p{ir) has a root, i.e. there exists a field exten-
sion J of I" in which p(x) has a root. A simple way to find this extension is
to consider the quotient X — [/ (p(x)}.

* lior the above case, let & — » mod (p(z)) < K. Then the clements
1,6,6%...07! are a basis for K as a vector space over £, with I . F| = n.
e For the above case, let o be the root of plz) st p(a) = 0. Then,

Flo) = Fal/(ple

Algebraic and Transcendental Elements

i. Algebraic Element: If 4 is a field extension over ¥, then e ¢ K is called
algebraic over £, if there exists some non-zero polynomial f(z) with coeffi-
cients, in F, s.t. fr) = 0.

ii. Transcendental Element: Elements « £ K which are not algebraic over F
are called transcendental.

o If o is algebraic over I, then Ila] — Fla), if o is transcendental over F,
then Fla] # Fla).

L

Structure Theorem for Finite Fields

Tet pbe a prime integer and let ¢ = p” for some positive integer . Then the
following statements held.

There exists a ficld of order g.

Any two ficlds of order ¢ arc isemorphic.

Let & be a field of order 4. The multiplicative group K" of non-zero
elements of K is a cyclic group of order ¢ — 1.

Tet K be a field of order ¢. The elements of K are the roots of
PR PR

A field of order p" contains a feld of order p* «— klr

The irreducible factors of 27 2 over I are the irreducible polynomials
in I’ ;z] whose degree divides r.

.

*

.

.

Algebraic Extensions

» Let e be algebraic over F. There there exists a unique monic irreducible
polynomial m,, »(z) = F[] which has « as a root.

o If 1./ F is an extension of fields and « is algebraic over both F and I, then
iy () divides i, p(2) in Liz).

o [ £'{a) is the field generated by o over & then, i) = F|x|/(ing(z)).

e let #C K C Lbefields. Then [L: #] — [L : K][# : #] o Similarly, [& : ]
divides |L : F.

e Tet K|, Ky be two finite extensions of field F contained in K. Then,
[K1Ky 2 F] £ [Ky @ FI[Kz : Fl, butif [Ky : F] = n,[K2 : F] = and if
ged (m.n) = 1. Then, [y Ky F| = [Ky: F[Ka: F| = nm
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Definition of a Field

A field F is a set with two binary operators (4, x ] satisfying the following
axioms,
* (F+4)1is an abelian group with identity 0.
* The non zero elements of F form an abelian group under multiplication
with identity 1 2 0.
» Left and right distributivity

Characteristic of Fields

A characteristic of a field F, dencted by <L(F) is defined as is the smallest
integer psuchthatl |1 -~ | 1= 0. If such a p docs not, exist ch(#7) = 0.

times

A K-algebra (or algebra over a field) is a ring A which is a module over field
K with multiplication being K-bilinear, (i.e., ka1 - k2aa = ki ko az).

Field Extensions

For fields I, L. We sav L is a field extension of I if K is a subfield of L.
Alternatively, L is a field extension of &, if L is a K-algebra.

Algebraic elements a.

Algebraic extensions

For a field extension K« L.
Algebraic element: «v £ T is called algebraic if 1P £ 0 K s.t. Pa) = 0.
Transcendental element: Tf such a I” does not exist then o is transcendental.
Consider the following definitions,

* Denote the smallest sublield of L containing & and « to be K ().

* Denote the smallest sub ring of L containing X and e to be K al.
The following statements are equivalent,

* v is algebraic over K.

* Ko is finite dimensional algebra over K.

¢ Ko = K{o).

Algebraic extension: L is called algebraic over K if all e <
over K.

* If L is algebraic over K then any K-subalgebra of L is a field.

* Consider ' < L < M.If o € M is algebraic over K, then it is alge-
braic over L, alse its minimal polynomial over L divides its minimal
pelynomial over K.

o If K © I < M then M is an algebraic extension over K «— M is
algebraic over L and L is algebraic over K.

Algebraic closure of L over K: A subfield I/ of L st. I/ = {a & L |
«v is algebraic over I}

1 are algebraic

Minimal Polynomial

1If & is an algebraic clement then =! menic polynomial P of minimal degree
such that F(e) — 0 such a polynomial is called the minimal polynomial.

* The minimal polynomial is irreducible

* Any other polynomial @ s.t. (o) = 0 will be divisible by P.

Eisenstein eriterio:

A polynomial f(z) — a,a™ +ay 2 1+ -+ ag € Zx] is irreducible if Tp
prime s.t. p divides all coefficients except a,, and 2 does not divide ag.

Finite extensions

For a field extension K < L. L is called a finite extension of < if the vector
space of T over K has a finite dimension.
Degree of finite extension: Denoted as [L : K| = dinig L
*» K ¢ L T M. Then M is finite over K <= 3 is finite over L and L is
finite over K. Also in this case, [M : K| = [M : L||L: K.
* Let Ko, ..., ay,) © L denote the smallest subfield of L containing /0
and oy £ L. This Kion,. . an) is generated by oo o
¢ Tis finite over K «= I is generated by a finite number of algebraic
elements over K .
o [K(a) : K| = dog Pagulen IC)

Tet P € K[X] be an irreducible monic polynomial. A field extension F is
called a stem field of P if 3o € E, s.t. wis a root of Pand E = Ka]

o If £ 1 are two stem fields for £ ¢ Klz], st L = Kla|, L' = K[o]
where o, o are roots of . Then ! isomorphism £ = £’ of K-algebras
which maps « to o,

If a stemn field contains two roots of P, then 3! automorphism that maps
one root to another.
If £'is a stem feld, [£: K] deg £
If [ : K = deg £ and £ contains a root of £ then £ is a stem field.
Some irreducibility criteria,
¢ P £ K[X]is irreducible over K <= it does not have roots in L/ K of
degree < dep /2.
* P e K| X|is irreducible over IV with deg P — . If L/K with L. K| —
m if ged{m.n) — 1 then P is irreducible over L.

Let P £ K X]. The splitting field of PP over K is an extension of I where P is
split into linear factors and the roots of PP generate L (alternatively if I” cannot
be factored into any intermediate field smaller than L).
» Splitting field L exists and its degree is < d!, where d — deg P. And it is
unique up to isomerphism as K —algebras.
* Degree of the splitting field divides dl.

Algebraic closure

* A field K is algebraically closed if any non-constant polynomial I &
K[X]has arootin K.

» L iscalled an algebraic closure of K if it is algebraically closed and an
algebraic extension over A

¢ Every field has an algebraic closure.

* Algebraic closures of K are unique up to isomorphism as i —algebras.

Pritmitive polynomials and Gauss” lemmna

Primitive polynomial: A polynomial F < Z[X] is called primitive if if has a
positive degree and the ged of its coefficients is 1.

Gauss’ lemma: A non-constant polynomial P € E[X] is irreducible over
Z X| +— itis primitive and irreducible over {J|z|
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Properties of finite flelds
Let p» be a prime integer and let ¢ — p* for some positive integer ». Then the

following statements hold.
There exists a field of order ¢.

* Any two fields of order ¢ are isomorphic.

* Let K be a field of order 4. The multiplicative group K of non-zero
clements of K is a cyclic group of order ¢ 1.

s Let K be a field of order ¢. The elements of K are the roots of 9 — x ¢
Byl

o A field of order p” contains a field of order pf < kr

* The irreducible factors of 27 — i over IF,, are the irreducible pelynomials

in 7, |] whose degree divides .

The splitting ficld of 27 » has ¢ clements.

T, is a stem field and a splitting field of any irreducible polynomial
P £ F, of degree r.

Frobenius homomorphism

Let K be a field, eh(&) — p > 0. There exists a homomorphism ¢ : K — X,
s.b () — 2% This is the Frobenius homoemorphism.
* The group of automorphisms over Fy,, over B, is cyclic and is generated
by the Frobenius map.

Separability

+ Separable polynomial: An irreducible polynomial > < K X] is called
separable if ged (P, P') = 1, 1.e. it has distinct roots.

* Degree of separability: deg,,, £ — deg @ for some P(X) — @ (x7")

* Degree of inseparability: deg, P — 47

e
Purely inseparable polynomial: P 15 ;urely inseparable if deg, P —
deg . Alsoif I is purely inseparable ' = X*" —a
Separable element: If L/ is an algebraic extension, then v € L is
called separable if its minimal polynomial over & is separable. And
vice versa.
If o ¢ K is separable then [Hom(K (o), K} deg Eyin{on K}
Separable degree: For /K, we have [L : K., = |T—Imn,((i((w),7w
Inseparable degree is degree of extension divided by separable degree.
Separable extension: L is separable over K if [L: Klwp — L K.

- If ch{£") = 0 then any extension of X is separable.

= If ch{ ) = p then pure inscparable extension has degree p” with

degree of inseparability p"

Separable degrees obey the multiplicative property.
TFAE for finite L/ K

- L is separable over

- Any clement of L is scparable over X

- L=Ko.om.... ), where each ¢y is separable over K.

- L= Koy, 00,... ), then oy is separable over Ko, ..., 1)
» Sepatable closure: L*P = {u | u separable over K} forw € K

Multilinear map

Tora module M over ring A. A function L from M© = M x M x - - x M into
—_—
7 times
Ads called multilinear if L{evy, ..., wv,) is linear as a function of each a; when
the other «; are fixed.
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Consider a ring A and two A—modules, 3. A The tensor product is denoted
as M &4 N and is an A—module along with a A—bilinear map,

g M x N > Mo N which satisfics a “universal property”.

Universal property of tensor product:

loraA medule £, if foran A bilincar map, f : M x N P, then 4! homo-
maorphism f of A—modules s.t. f = fo g

MxN —F s Mua ¥
B
5 | ‘
P
+ Commutativity of tensor product M @4 N 2 N g M
¢ A g M=M
.

The basis for the tensor product of free modules is the tensor product of
their individual basis elements.

* The tensor product is associative.
Base change theorem: For a ring A, B an A—algebra, M an A—module and
N a B-module. Then we have the following bijection

Hom 4 (M. N} + Homy{B s 4 M, N)

+ For T anideal of a ring A and M an A—module we have, A/T 2, M =
MM

Chinese remainder theorem

Comaximal ideals: Two ideals of a ring are called comaximal {or coprime) if
their sum gives the ring itself.

* Uf [ J are comaximal then I.J — I [J

L0 ¥ FP I, comaximal w.r.t .J then H’Ll I, is also comaximal with .J.

+ If /. .J are comaximal then so are {7, " for any m, n.
Chinese remainder theorem: For a ring A, consider two comaximal ideals
7.0, then%a, b £ R, 1o = Ast. o =almod!) and & = b{modJ)
Generalized Chinese remainder theorem: For a ring 4, let ..., I, be ide-
als of the ring A. Consider the map = : 4 — A/f x --- x A/, defined as
w(a) = {n mod Ii,....e mod ). Then kerw = Iy (- - [ I, Le. it is surjec-
tive Uf 7)., - - I, are pairwise comaximal, If = is a surjection we have,

AV — A ez ] LA

Structure of finite algebras

Let A be a finjte K —algebra then,

¢ There are only finitely many maximal ideals in A.

* For finitely many maximal ideals m.. Let J — mq () --[}me. Then

J7% — () tor some 7.

o A AS/mP ko Af/mie for some (ot necessarily unique) na. .. 7.
Reduced K-Algebra: If it has no nilpotent elements.
Local ring: If it has only one maximal ideal. A non zero ring in which every
element is either a unit or nilpotent is Jocal.

Let 1. be a finite extension over A then the following hold,

L is separable <= L & K is reduced.

L is purcly inscparable «= L %y K is local.

Lis separable <= ¥ algebraic extensions O, L &y Q is reduced.

L is purely separable +— v algebraic extensions (!, L & 1 is local.

e If 1. is separable then the map ¢ : L sy K —+ K" defined as wlls kY =
(e {l)s .. kea(l)) (where 35, are distinct homomorphisms from L to
K), is an isomorphism.

* Let L be a finite separable extension of X then it has only finitely many
intermediate extensions.

.
.
.
*

There exists e ¢ L s.t. L = K{n) whenever £ is finite and separable.

A normal extension of & is an algebraic extension which is a splitting field
of a family of polynomials in /| X|.
TFAFE for an extension T of I,
o Yoo L, Pyl K)splitsin L.
® [.is a normal extension.
+ All homomorphisms from L to K have the same image.
* The group of automorphisms, Aut(L/K] acts transitively on
Homy (L, K).
Some properties of normal extensions,
o [0 L M, if M isnormal over K then it is normal over L, but L need
not be normal over K.
¢ Extensions with degree 2 are normal.

Galois extensions

An algebraic extension that is both normal and separable is called a Galois
extension.
* Tor a finite extension L over K the number of automorphisms
[Aut{L/K} < [L: K]. Equality holds iff L is a Galois” extension.
1t L is normal over & then,
* Tsomorphism of sub extensions extend to automorphisms of 7.
¢ Aul(L/K) acts transitively on the roots of any irreducible polynomial
in K[X].
o If Au{L/K} fixes » £ K. Then x is purely inseparable.

Galois groups
Tf I is a Galois extension, G = Gal(T/R} = Aut(L/K} is called the Galois
group of the extension.
s LUK = K (fe. the set of invariants in I with the action of the
Galois group is equal to I).
* lLet 1. be afield and (7 a subgroup of Aut( L), then
— Tf all orbits of ¢ are finite, then L is a Galois extension of L%,
— Tf order of G is finite then, [ : LS — || and (7 is a Galois group.

The Fundamental theorem of Galois theory

Let L/K be a Galois extension, and Aul(L/K) — CGal(L/K) is its Galois
group.
¢ If L is finite over K, then for a intermediate field F and a subgroup
H < Gal(L/K) we have the following correspondence,
- F — Gal(L/F)
- H oL
* Fis Galois over K <—
Gal[L/ 1) = Gal{L/K)

g(F) = F, ¥g € GallL/K) <
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Lor a polynomial # with roots «;, the discriminant is A = [, (a:  x;)7
For Gal{P’)  $,.. For a separable polynomial,

* As preserved by any permutation.

e VA s preserved only by even permutations

s GCA, = VASK

Cyclotomic polynomials and extensions

Let P, = X lwherep-nifch(K)=p = 0.
Py, has 7 distinct roots which form a cyclic multiplicative subgroup g, < .
Let g2, + denote the set of primitive n*™ roots of unity (no reots of degree < n).
o x| = ()
Cyelotomic polynomials: ¢, = []
o Fo— Tl o
* @, has coefficients in prime fields.
e Ifch(K) — 0 then @, ¢ Z[X], else if ch(K) — p, we have @, is the
reduction mod p of the n** cyclotomic polynomial over Z.
& If ch{A) — 0, then @, is irreducible over Z[X].
Consider L, splitting field of X
* The splitting field of 2, over & is i (() where ( is a root of ®,,.
o Allg e Gal(L/K)acts as ¢ = ¢ {a%.n) = 1.
* CallL/K) injects into Z/nZ* and this is an isomorphism when &, is
irreducible over K.

(X —a) e K[X.

gt

Kummer extensions

A field extension L/} is called a Kummer extension if for some integer n = 1
* K contains # distinct n* roots of unity.

® Gul(7.//) is abelian group with lem of the orders of group elements
(exponent ) equal to .
Consider K s.t. for some 5, (ch{K),n) = 1 and X — 1 splits in K, for any
o€ K take d — minfi | o/" € K} then we have,
e d|nand Pymlal") = Xd gl
» K{a"'™) is Galois extension with cyclic Galois group of order d.
The converse is also true.

let L/K be a field extension s.t. ch{K) — p for prime p. It is called Artin-
Schreier extension if degree of extension L is p.
Artin-Schreier theorem: Letch(#7) pandlet# = X* X ac K|X | Then
P is either irreducible or splits in /. Let «x be a root of I,
e If P isirreducible, then K () is a cyclic extension (i.c. Galois group is
cyclic) of K of degree p.
* Any cyclic extension of degree p is obtained in the same way.

Composite nsions

Let Ly, Lz be two intermediate extensions of A and some £/ K that contains
them both. Then T Lo = Faly = K(F|J o) the smallest extension that
contains both L, I is called composite extension.
e If Iy and L, are separable/purely inseparable/normal/finite over K
then its composite field also possess that property.
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Linearly disjoint extensions

TUAL for algebraic extensions,
* L1 @y Ly isafield.
¢ L #x Ly — Lis an injection.
* A linearly independent set in £, is also linearly independent in £.,.
» For linearly independent sets (over K) A € L), B ¢ Ly we have 4 x B
is lincarly independent over #
Ly, Ly satisfying these properties are called linearly disjoint extensions.
o Ifdeg L) is finite then [LyLy ¢ Ly = [Ly ¢ K] cquivalently [LiLy : K] =
Ly : K[Ls: K]
* lixtensions which are relatively prime degrees are linearly disjoint.
For K the algebraic closurce of &,
o let L, L,  K,if L, is Galois over K and let K/ — L, MLy Then L, L,y
is Galois over Ly. The map ¢»: g — y|p, of Gal(L1Ls/Ls} — Gal(L, /K)
is injective with image Gal(L,/K') and L, Ls lincarly disjoint over J{’.

Solvable extensions and polynomials

Sclvable extension: A finite extension E of K is solvable by radicals if
Fery, - o gemerating Fosuch that ol € Koy, ..oy o) for some n,.
Solvable polynomials: I ¢ K[X]is solvable by radicals if 3 a solvable exten-
sion E/ K containing its roots.
* A composite of solvable extensions is solvable.
* For finite L/K solvable —» 7 finite Galois extension also solvable
when ch({RK) = 0.

Solvable groups

A group ( is called solvable if it has a finite sequence of normal subgroups,
(IT=Gpd Gy .. dG, =G)and also Gy 1/G, is abelian.

* Subgroups of solvable groups are solvable.

* If G'is solvable and H < & then G/ H is solvable.

+ 1f G if a finite abelian group then G is solvable

* 5, isnot solvable forn > 5.

Solvability by radicals

Let £ ¢ K[X],ch{X) = 0. P is a polynomial solvable by radicals iff Gal(P) is
solvable. Here Gal(#) — Gal{#'/K ), where £ is a splitting ficld of # over K.

Abel-Ruffini theorem

General polynomials of degree v. > 5§ are not solvable by radicals since S, for
1t = B is not solvable.
L

Group representations

For vector space V, a representation of a finite group & is @ homomorphism
@ G — GL{V), where ('L(V') is the group of automorphisms of V.
Regular representation: l'or vector space V generated by clements of group
. A homomorphism involving permuting this basis is called regular.
* For L/K as a vector space over K we have a representation of the Galois
group i : Gal(L/K) » GLg{L). This is a regular representation.

Normal b; theorem

For L/ I a finite Galois extension, J € L/K s.t. {gw | g = G} is a K —basis of
L

Integral elements

Integral elements: licr a integral domain A and {2 an extension ring of A. An
clement e ¢ £ Is said to be integral over A if o is the root of a monic polyno-
mial in A[X .
TFAL,

* v is integral over A,

* Ala] is a finitely gencrated A module.

o Ale| C C < B where (' is a finitely generated A4 module.
.,

Field Norm and Trace

Let K —+ F be a separable field extension, for v £ K its field norm is defined
as Ny () =[], . poe 7il). The trace (Tr) is the same with sum instead.
* Norm is multiplicative, trace is additive and h—Tlinear.
s I B = Klo), Ngg = (—DIFF(Constant coeff of Py te, K)),
Trg i ler) = —(Coefficient of XU#XI-1)
* Toratower K C M L, N — NpywoNpyr, Trgne — Trrpelip e
o T:ExE— Kas{ay) — Tr(x,y) isa non-degenerate i —bilinear.
* 1f v is integral over Z. Then Ngq(wv), Trg g} are integers.

\

Integral extensions, closures

Integral extension: For A . B. E is said to be an integral extension of A if
every element of B is an integral element over 4.
* A B CifBis integral over A and ' integral over B — (' is
integral over A.
* B is finitely generated over 4 as a module «— B = Aloy,..., x|
where each «; is integral over A.
* Elements of B integral over A forms a subring of B. This is the integral
closure of A in .
Integrally closed: A is integrally closed in B if the integral closure of Ain B
is same as A. In general A is integrally closed if A is integrally closed in its
field of fractions.
* Lis integrally closed.
¢ Any UFD is integrally closed.
Let & be a Number field, the integral closure of Z in K is Oy the ring of
integers.
* o € K, there exists o € Z* such that dov € O .
o a2 O = Prinlee, () € Z|X|.
* Oy is a finitely generated, free Z—module of rank n = [K, (]

\

Reduction modulo prime

Let I £ Z|X| be an irreducible polynomial, and K its splitting field over ).
With |[& : @ — n. Let & — Gal{#). Let ). ...a, be roots of £ Consider
A — Ok and let Jy,..., J, be all the maximal ideals of A containing some
prime p. Consider D; < G, D; = g« G | ¢f; = J;} and let k; — A/ J;. There
exists a natural homomorphism D; = Gal(k;. T}
We then have the following,
» (! acts tfransitively on {.J,......J,} and D; maps surjectively into
Cal(k;/TF,).
* If reduction P = P 1mod p does not have multiple roots then the map
Dy «» Gal{k; /IF,) is a bijection and ; is a splitting field of P for some .
Example: [f for I € Z X| is irreducible and 3 prime p such that P — P mod p
is also irreducible. Then we have that Gal{ P} contains an si—cycle permuta-
tion.
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