Harold’s Big O
Cheat Sheet
22 September 2025

AKA Analysis of Algorithms

Asymptotic Notations

	Term
	Definition

	Bachmann–Landau Notation
	· A family of asymptotic mathematical notations that describe the limiting behavior of a function as the argument tends towards infinity.
· Includes O, o, Ω, ω, and Θ.
· Omits constant factors (), lower-order terms, and constants ().

	Big O (O)
	The tight upper bound asymptotic growth rate of . GOOD

	Big Omega (Ω)
	The tight lower bound asymptotic growth rate of .

	Theta (Θ)
	The tight bound asymptotic growth rate of . BETTER

	Little O (o)
	The loose upper bound asymptotic growth rate of .

	Little Omega ()
	The loose lower bound asymptotic growth rate of .

	Closed Form
	The exact solution, not just asymptotic. BEST

	[image: Lightbox]

Big O (O) – Tight Upper Bound

	Term
	Definition

	What it Means
	· The asymptotic tight upper bound of a function is represented by Big O notation (O).
· Means “is of the same order as”.
· The rate of growth of an algorithm is a specific value.
· grows no faster than .
· We are concerned with how grows when is large.

	Definition
	
If there exist positive constants and such that

	Graph
	 is asymptotically bounded above by up to a constant factor .
[image: A graph of a function

AI-generated content may be incorrect.]

	Examples
	
	Since

	
	
	 is the largest exponential

Big Omega (Ω) – Tight Lower Bound

	Term
	Definition

	What it Means
	· The asymptotic tight lower bound of a function is represented by Big Omega notation ().
· The rate of growth of an algorithm is to a specific value.
· Big-Omega Ω notation is the least used notation for the analysis of algorithms because it can make a correct but imprecise statement over the performance of an algorithm.

	Definition
	
If there exist positive constants and such that

	Graph
	[image: Lightbox]

	Examples
	
	

Theta (Θ) – Tight Bound

	Term
	Definition

	What it Means
	· The exact asymptotic behavior, both upper and lower, is represented by Theta notation (Θ).
· The rate of growth of an algorithm is to a specific value.
· Provides the average time complexity of an algorithm.

	Definition
	
If there exist positive constants and such that

	Graph
	[image: Lightbox]

	Example
	Linear search
	Average case time complexity:

Little O (o) – Loose Upper Bound

	Term
	Definition

	What it Means
	· The asymptotic loose upper bound of a function is represented by Little O notation (o).
· Means “is ultimately smaller than”.
· o is a rough estimate of the maximum order of growth whereas O is more accurate and may be the actual order of growth.
· grows strictly faster than, or grows at least as fast as, .
· Is a stronger statement than Big-O since it is not asymptotically tight.

	Definition
	
If there exist positive constants and such that

	Graph
	[image: Data Structures Asymptotic Analysis - TechVidvan]

	Examples
	
	

	
	
	

Little Omega () – Loose Lower Bound

	Term
	Definition

	What it Means
	· The asymptotic loose lower bound of a function is represented by Little Omega notation ().
· Means “is ultimately larger than”.
· is a rough estimate of the minimum order of growth whereas is more accurate and may be the actual order of growth.
· grows strictly faster than, or grows at least as fast as, .
· is a stronger statement than since it is not asymptotically tight.

	Definition
	
If there exist positive constants and such that

	Graph
	[image:]

	Examples
	
	

	
	
	

Complexity

	Term
	Definition

	Comparing Complexity
	
[image: A diagram of a complexity

AI-generated content may be incorrect.]

	Complexity Classes
	Ordered from smallest to largest impact.

	
	Notation
	Name

	
	
	Constant

	
	
	Inverse Ackermann function

	
	
	Double logarithmic

	
	
	Logarithmic

	
	where
	Polylogarithmic

	
	where
	Fractional power

	
	 where
	Linear

	
	
	n log-star n

	
	
	Linearithmic

	
	
	Quadratic

	
	
	Cubic

	
	 where
	Polynomial or algebraic

	
	
	Exponential

	
	
	Factorial

	Examples
	Ordered from smallest to largest.

	
	Big O
	Justification

	
	
	It is a constant (rather large, but still a constant).

	
	
	Logs make large numbers small.

	
	
	 is larger than , but is still a log so the same as above.

	
	
	Polynomials can be large.

	
	
	Same as since Big-O only cares about the largest polynomial degree.

	
	
	Similar to , but is much larger.

	
	
	Exponentials are larger than polynomials.

	
	
	Similar to but is larger.

	
	
	Larger than the exponential since multiplied by n.

	
	
	Factorials grow fastest of all.

Computer Science Application

	Term
	Definition

	Usage
	Analysis of algorithms.

	Asymptotic Growth Rates
	Used to analyze and classify algorithms according to how their run time or space requirements grow as the input size grows.

	
[image: undefined]

	Master Theorem
	Provides an asymptotic analysis for many recurrence relations that occur in the analysis of divide-and-conquer algorithms.

	General Recurrence Relation Form
	

: Input size
: Total time for the algorithm
: Number of subproblems
: Factor by which the subproblem size is reduced in each recursive call
:f(n) : Amount of time taken at the top level of the recurrence

	Define
	

	
Master Theorem Cases

	Case
	Description
	Condition on in relation to ,
ccriti.e., logb⁡a
	Master Theorem bound
	Notational examples

	1
	Work to split / recombine a problem is dominated by subproblems.
i.e., the recursion tree is leaf-heavy.
	When f(n)=O(nc) where

c<ccrit(upper-bounded by a lesser-exponent polynomial)
	... then

(The splitting term does not appear; the recursive tree structure dominates.)
	If and f(n)=O(n1/2−ϵ), then
T(n)=Θ(n1/2).

	2
	Work to split / recombine a problem is comparable to subproblems.
	When f(n)=Θ(nccrit(log⁡n)k)for a

(rangebound by the critical-exponent polynomial, times zero or more optional loglogs)
	... then

(The bound is the splitting term, where the log is augmented by a single power.)
	If and f(n)=O(n1/2−ϵ), then
T(n)=Θ(n1/2).

If and f(n)=O(n1/2−ϵ), then
T(n)=Θ(n1/2).

	3
	Work to split / recombine a problem dominates subproblems.

i.e., the recursion tree is root-heavy.
	When f(n)=Ω(nc)where c>ccrit

(lower-bounded by a greater-exponent polynomial)
	... this doesn't necessarily yield anything.
Furthermore, if for some constant and all sufficiently large
(often called the regularity condition)
then the total is dominated by the splitting term : T(n)=Θ(f(n))
	If and f(n)=O(n1/2−ϵ),
and the regularity condition holds, then T(n)=Θ(f(n))
T(n)=Θ(n1/2).

	Generating Functions
	· represents time, or the number of steps it takes, to complete a problem of size .
· Assume .
· exact solution.

	Examples
	Recursive Form
	Closed Form Exact Solution

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	Closed Form Tool
	Use my Big O spreadsheet to iteratively help you find the exact closed-form solution from a recursive generating function .

	
	Harolds_Big_O_Calculator.xlsx

	
	

	
[image: A screenshot of a computer

AI-generated content may be incorrect.]

	
[image: A screen shot of a computer program

AI-generated content may be incorrect.]

Mathematics Application

	Term
	Definition

	Usage
	Is commonly used to describe how closely a finite series approximates a given function, especially in the case of a truncated Taylor series.

	Taylor Series
	

where and

	Maclaurin Series
	 Taylor Series centered about

	Example
	

Sources
· Dev (2025), Asymptotic Notations: A Comprehensive Guide. https://dev.to/princem/asymptotic-notations-a-comprehensive-guide-30i8
· Geeks for Geeks (20 Mar 2015).
· Big O vs Theta Θ vs Big Omega Ω Notations. https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/
· Analysis of algorithms | little o and little omega notations. https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-little-omega-notations/
· Rowell, Eric (2025). The Big-O Algorithm Complexity Cheat Sheet. https://www.bigocheatsheet.com/
· Wikipedia (2025).
· Big O notation. https://en.wikipedia.org/wiki/Big_O_notation
· Master theorem (analysis of algorithms). https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Copyright © 2025 by Harold Toomey, WyzAnt Tutor	 	 1
Copyright © 2025 by Harold Toomey, WyzAnt Tutor	 	 1
image3.png
1 Time

image4.png
cr'gin)

image5.jpeg

image6.png
f(n)

w(f(n))

no

f(n) = w(g(n))

image7.png

image8.png
ni2"? nlogzn n

10075
9| |
80
70
60
N
50
40
30
20

10

90 10 20 30 40 50 60 70 80 90 100

n

image9.png
Data Structure

Array,

Stack

Queue
Singly-Linked List
Doubly-Linked List
Skip List

Hash Table

Binary Search Tree
Cartesian Tree
B-Tree

Red-Black Tree
Splay_Tree

AVL Tree

KD Tree

Common Data Structure Operations

Time Complexity

Space Complexity

Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion
@ [em| fem)] [em] [6@) o(n) lom] [om)] o(n)
@ B@ o om @ @ o)
@ B@ o om| @ @ o(m)
@ EE o om| @ @ o)
@ B& ow om| @ @ o(n)
o(1og(n)) | |e(1og(n))] [0(log(n))|[0(log(n))| o(n) o(n) om]| o] [o(n 10g(n))]
N/A [o)] [o)] [oc)] N/A o(n) lo(n)| lo(m] o(n)
o(1og(n))|[e(1og(n))|[e(1og(n)) |[e(1og(n))] [o(n) o(n) o(m)| |o(m] o(n)
N/A [e(log(n))|[e(log(n))|[e(1og(n)) N/A o(n) lo(n)]| lo(n)] o(n)
o(1og(n)) | |e(1og(n))] [0(log(n))|[0(log(n)) |[0(log(n)) |[0(Log(n)) |[0(1og(n))] [0(1og(n))] o(n)
o(1og(n)) | |e(1og(n))] [0(log(n))|[0(log(n)) |[0(log(n)) |[0(Log(n)) |[0(1og(n))] [0(1og(n))] o(n)
N/A [e(log(n))|[e(log(n))|[e(1og(n)) N/a [o(log(n))|[0(1og(n))][0(10g(n))] o(n)
o(1og(n))| [e(10g(n))|[e(10g(n)) | [e(1og(n))| [0(10g(n)) |[0(10g(n)) |[0(1og(n))]| [0(10g(n))]| o(n)
o(log(n))|e(1og(n))] [0(log(n))|[0(log(n))| o] lom)] [om)| [o(m)] o(n)

image10.png
Array Sorting Algorithms

Algorithm Time Complexity Space Complexity
Best Average Worst Worst

Quicksort [a(n 1og(n))| [e(n log(n))] -

Mergesort [a(n log(n))] [o(n log(n)] [o(n log(n))] lo(m)]

Timsort lam)| [e(n 1og(n))| [o(n log(n))] lo(m]

Heapsort ‘Q(n log(n))‘ ‘e(n log(n))‘ ‘O(n log(n))‘ -

Bubble Sort [o(n~2)] [o(n~2)] [o)]

Insertion Sort [a(n) [o(n~2)] [o(n~2)] [o)]

Selection Sort - - - -

Tree Sort [a(n Tog(n))] [o(n Togm))] [0(n2)]

Shell Sort [a(n 10g(m))] [e(n(108(n))"2) | [o(n(i0g(m)~2)|

BucketSort [[o2

RadixSort [[o).

Counting Sort [0 G otns)

Cubesort la(n)| [6(n log(n))| [o(n log(n))]

image1.png
Effort

o(n)

O(n)

f(n)
Q)

> ()

image2.png

