Harold's Big O Cheat Sheet

22 September 2025

AKA Analysis of Algorithms

Asymptotic Notations

Big O (O) – Tight Upper Bound

Term	Definition				
What it Means	 The asymptotic tight <u>upper bound</u> of a function is represented by Big O notation (O). Means "is of the same order as". The rate of growth of an algorithm is ≤ a specific value. f(n) grows no faster than g(n). We are concerned with how f grows when n is large. 				
Definition	$f(n) = 0(g(n)) \ as \ n \to \infty$ If there exist positive constants c and n_0 such that $0 \le f(n) \le c \cdot g(n) \ for \ all \ n \ge n_0.$				
Graph		ove by $g(n)$ up to a constant factor C . $c * g(n)$ $g(n)$ $g(n)$			
Examples	$f(n) = 6n^4 - 2n^3 + 5 = O(n^4)$ $f(n) = n^{-3} + n^{-2} + n^{-1} = O(n^{-1})$	Since $ 6n^4 - 2n^3 + 5 \le 13n^4$ n^{-1} is the largest exponential			

Big Omega (Ω) – Tight Lower Bound

Term	Definition			
What it Means	 The asymptotic tight <u>lower bound</u> of a function is represented by Big Omega notation (Ω). The rate of growth of an algorithm is ≥ to a specific value. Big-Omega Ω notation is the least used notation for the analysis of algorithms because it can make a correct but imprecise statement over the performance of an algorithm. 			
Definition	$f(n) = \mathbf{\Omega}\big(g(n)\big) \text{ as } n \to \infty$ If there exist positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0.$			
Graph	f(n) C g(n)			
Examples	$f(n) = \sin(n) = \Omega(1)$			

Theta (O) – Tight Bound

Term	Definition				
What it Means	 The <u>exact asymptotic</u> behavior, both upper and lower, is represented by Theta notation (O). The rate of growth of an algorithm is = to a specific value. Provides the average time complexity of an algorithm. 				
Definition	$f(n) = \mathbf{\Theta}(g(n)) \ as \ n \to \infty$ If there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \ \ for \ all \ n \ge n_0.$				
Graph		$c_2 * g(n) $ $f(n)$ $c_1 * g(n)$			
Example	Linear search	Average case time complexity: $= \frac{\sum_{i=1}^{n+1} \Theta(i)}{n+1}$ $\Rightarrow \frac{\Theta(n+1) \cdot \frac{(n+2)}{2}}{n+1}$ $\Rightarrow \Theta\left(1 + \frac{n}{2}\right)$ $\Rightarrow \Theta(n)$			

Little O (o) – Loose Upper Bound

Term	Definition				
What it Means	 The asymptotic loose <u>upper bound</u> of a function is represented by Little O notation (o). Means "is ultimately smaller than". o is a <u>rough estimate</u> of the maximum order of growth whereas O is more accurate and may be the actual order of growth. g(x) grows strictly faster than, or grows at least as fast as, f(x). 				
Definition	• Is a stronger statement than Big-O since it is not asymptotically tight. $f(n) \in \pmb{o}\big(g(n)\big)$ If there exist positive constants c and n_0 such that $0 \leq f(n) \leq c \cdot g(n) \ \ for \ all \ n \geq n_0.$ $f(n) \in \pmb{o}\big(g(n)\big) \ if \ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$				
Graph	o(n) O(n) f(n)				
Examples	$f(n) = \frac{1}{n} = o(1)$ $\lim_{n \to \infty} \frac{\left(\frac{1}{n}\right)}{1} = 0$ $f(n) = 7n + 8 = o(n^2)$ $\lim_{n \to \infty} \frac{7n + 8}{n^2} = 0$				

Little Omega (ω) – Loose Lower Bound

Term	Definition		
What it Means	 The asymptotic loose lower bound of a function is represented by Little Omega notation (ω). Means "is ultimately larger than". ω is a rough estimate of the minimum order of growth whereas Ω is more accurate and may be the actual order of growth. f(x) grows strictly faster than, or grows at least as fast as, g(x). ω is a stronger statement than Ω since it is not asymptotically tight. 		
Definition	$f(n) \in \pmb{\omega}\big(g(n)\big)$ If there exist positive constants c and n_0 such that $0 \leq c \cdot g(n) \leq f(n) \ \ for \ all \ n \geq n_0.$ $f(n) \in \pmb{\omega}\big(g(n)\big) \ if \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$		
Graph	n_0 $f(n) = 0$	$\frac{f(n)}{\omega(f(n))}$ n $\omega(g(n))$	
Examples	$f(n) = 4n + 6 = \omega(1)$ $f(n) = 6n^2 - 4n + 6 = \omega(n)$	$\lim_{n \to \infty} \frac{4n+6}{1} = \infty$ $\lim_{n \to \infty} \frac{6n^2 - 4n + 6}{n} = \infty$	

Complexity

$O(n^3)$	Same as $O(n^3 + n^2)$ since Big-O only cares about the largest polynomial degree.
$O(n^{100})$	Similar to $O(n^3)$, but is much larger.
$0(1.1^n)$	Exponentials are larger than polynomials.
$O(3^n)$	Similar to $O(1.1^n)$ but is larger.
$O(n2^n)$	Larger than the exponential $O(3^n)$ since multiplied by n.
O(n!)	Factorials grow fastest of all.

Computer Science Application

Term	Definition						
Usage	Analysis of algorithms.						
Asymptotic Growth	Used to analyze and classify algorithms according to how their run time or						
Rates	space requirements grow as the input size grows.						
	100 n!2 ⁿ n ² nlog ₂ n n 90 80 70 60 N 50 40 30 20 10 20 30 40 50 60 70 80 90 100 n						
Master Theorem	Provides an asymptotic analysis for many recurrence relations that occur in the analysis of divide-and-conquer algorithms.						
General Recurrence Relation Form	$T(n) = a T\left(\frac{n}{b}\right) + f(n)$ $n: \text{Input size}$ $T(n): \text{Total time for the algorithm}$ $a: \text{Number of subproblems}$ $b: \text{Factor by which the subproblem size is reduced in each recursive call}$ $(b > 1)$ $f(n): \text{Amount of time taken at the top level of the recurrence}$						

Define c_{crit}

$$c_{crit} = log_b \ a = \frac{log(\# \ of \ subproblems)}{log(relative \ subproblem \ size)}$$

Master Theorem Cases

Case	Description	Condition on $f(n)$ in relation to c_{crit} , i.e., $\log_b a$	Master Theorem bound	Notational examples
1	Work to split / recombine a problem is dominated by subproblems. i.e., the recursion tree is leaf-heavy.	When $f(n) =$ $0(n^c)$ where $c < c_{crit}$ (upper-bounded by a lesser-exponent polynomial)	then $T(n) = \Theta(n^{c_{crit}})$ (The splitting term does not appear; the recursive tree structure dominates.)	If $b=a^2$ and $f(n)={\bf 0}(n^{\frac{1}{2}-\epsilon}),$ then $T(n)={\bf 0}(n^{\frac{1}{2}}).$
2	Work to split / recombine a problem is comparable to subproblems.	When $f(n) = \Theta(n^{c_{crit}} (\log n)^k)$ for a $k \ge 0$ (rangebound by the critical-exponent polynomial, times zero or more optional logs)	then $T(n) = \Theta(n^{c_{crit}} (\log n)^{k+1})$ (The bound is the splitting term, where the log is augmented by a single power.)	If $b=a^2$ and $f(n)=\boldsymbol{O}(n^{\frac{1}{2}})$, then $T(n)=\boldsymbol{O}(n^{\frac{1}{2}}\log n)$. If $b=a^2$ and $f(n)=\boldsymbol{O}(n^{\frac{1}{2}}\log n)$, then $T(n)=\boldsymbol{O}(n^{\frac{1}{2}}(\log n)^2)$.
3	Work to split / recombine a problem dominates subproblems. i.e., the recursion tree is rootheavy.	When $f(n) = \Omega(n^c)$ where $c > c_{crit}$ (lower-bounded by a greater-exponent polynomial)	this doesn't necessarily yield anything. Furthermore, if $af\left(\frac{n}{b}\right) \leq kf(n)$ for some constant $k < 1$ and all sufficiently large n (often called the <i>regularity condition</i>) then the total is dominated by the splitting term $f(n)$: $T(n) = \Theta(f(n))$	If $b=a^2$ and $f(n)=0(n^{\frac{1}{2}+\epsilon})$, and the regularity condition holds, then $T(n)=0(f(n))$.

		- T	()					:4 4	
						ie numbo	er of step	os it take	es, to complete
Generating Functions		a problem of size n .							
		• Assume $T(1) = 1$. • $\Theta(f(n)) \approx \text{exact solution}$.							
					solution.				0.1.1
		Recursive Form				Closed Form Exact Solution			
		$T(n) = 4T\left(\frac{n}{2}\right) + n$			n	$T(n) = 2n^2 - n$			
		$T(n) = 2T\left(\frac{n}{2}\right) + 10n$				$T(n) = n + 10n \log_2 n$			
		$T(n) = 2T\left(\frac{n}{2}\right) + n^2$			n^2	$T(n) = 2n^2 - n$			
Examples			(n)=47	\Z/		T(n	$n)=n^2\cdot$	$log_2(n)$	$)+n^2+n-2$
		T(n) =	$=8T\left(\frac{n}{2}\right)$	+ 1000	n^2	T	(n)=10	$001n^3 -$	$1000n^2$
		ın,			Т	$\Gamma(n) = \frac{1}{2}$	$n^2 \cdot (lo)$	$g_2(n))^2$	
		$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \log_2(n)$			$_2(n)$				
						$+\frac{1}{2}n^2 \cdot log_2(n) + n^2$			
		Use my Big O spreadsheet to iteratively help you find the exact closed-							
	<u> </u>	form solution from a recursive generating function $T(n)$.							
		Harolds Big O Calculator.xlsx							
Closed Form Tool		$T(n) = An! + B3^{n} + C2^{n} + Dn^{3} + E(n\log_{2}(n))^{2} + Fn^{2}\log_{2}(n)$							
		$+ Gn^2 \log_2(\log_2(n)) + Hn^2 + I(n \log_2(n))$							
		$ + J(n \log_2(\log_2(n))) + K(\log_2(n))^2 + Ln + M\sqrt[2]{n} $ $ + N\sqrt[3]{n} + O \log_2(n) + P1 $							
Common Data Structure Operations									
						орон			
		mplexity							Space Complexity
	Average				Worst				Worst
	Access	Search		Deletion		Search		Deletion	
<u>Array</u>	Θ(1)	Θ(n)	Θ(n)	Θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
<u>Stack</u>	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	Θ(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List Skip List	<mark>Θ(n)</mark> Θ(log(n))	$\frac{\Theta(n)}{\Theta(\log(n))}$	Θ(1) Θ(log(n))	0(1) 0(log(n))	0(n)	0(n)	0(1)	0(1)	0(n) 0(n log(n))
	N/A	Θ(10g(H))	Θ(1)	Θ(1)	O(n) N/A	0(n) 0(n)	0(n) 0(n)	0(n) 0(n)	0(n)
Hash Tahle		0(1)	0(1)	0(1)	14/ 🔠	0(11)	O(II)	0(11)	3(11)
Hash Table Binary Search Tree		0(log(n))	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)
Binary Search Tree					O(n) N/A	0(n) 0(n)	0(n) 0(n)	0(n) 0(n)	0(n) 0(n)
Binary Search Tree Cartesian Tree	Θ(log(n))	O(log(n))	$\Theta(\log(n))$	Θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree Cartesian Tree B-Tree	Θ(log(n)) N/A	$\Theta(\log(n))$ $\Theta(\log(n))$	$\Theta(\log(n))$ $\Theta(\log(n))$		N/A				O(n) O(n)
Binary Search Tree Cartesian Tree B-Tree	0(log(n)) N/A 0(log(n))	$\Theta(\log(n))$ $\Theta(\log(n))$	$\begin{array}{c} \Theta(\log(n)) \\ \Theta(\log(n)) \\ \Theta(\log(n)) \end{array}$	$\Theta(\log(n))$ $\Theta(\log(n))$ $\Theta(\log(n))$	N/A O(log(n))	0(n) 0(log(n))	O(n) O(log(n))	0(n) 0(log(n))	O(n) O(n)
Binary Search Tree Cartesian Tree B-Tree Red-Black Tree Splay Tree	0(log(n)) N/A 0(log(n)) 0(log(n))	$\begin{array}{c} \Theta(\log(n)) \\ \Theta(\log(n)) \\ \Theta(\log(n)) \\ \Theta(\log(n)) \end{array}$	<pre>Θ(log(n)) Θ(log(n)) Θ(log(n))</pre>	$\begin{array}{c} \theta(\log(n)) \\ \theta(\log(n)) \\ \theta(\log(n)) \\ \theta(\log(n)) \end{array}$	N/A O(log(n)) O(log(n))	0(n) 0(log(n)) 0(log(n))	0(n) 0(log(n)) 0(log(n))	0(n) 0(log(n)) 0(log(n))	0(n) 0(n) 0(n) 0(n)

Algorithm	Time Comp	olexity		Space Complexity
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	0(log(n))
<u>Mergesort</u>	$\Omega(n \log(n))$	O(n log(n))	O(n log(n))	0(n)
<u>Timsort</u>	$\Omega(n)$	Θ(n log(n))	O(n log(n))	0(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	0(1)
Bubble Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Insertion Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Selection Sor	$\Omega(n^2)$	Θ(n^2)	O(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	$\Theta(n \log(n))$	O(n^2)	0(n)
Shell Sort	$\Omega(n \log(n))$	$\Theta(n(\log(n))^2)$	O(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)	0(n)
Radix Sort	$\Omega(nk)$	Θ(nk)	O(nk)	O(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	0(n+k)	0(k)
Cubesort	$\Omega(n)$	$\Theta(n \log(n))$	O(n log(n))	O(n)

Mathematics Application

Term	Definition		
Usage	Is commonly used to describe how closely a finite series approximates a given function, especially in the case of a truncated Taylor series.		
Taylor Series	$f(x) = P_n(x) + R_n(x)$ $P_n(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$ $R_n(x) = \frac{f^{(n+1)}(x^*)}{(n+1)!} (x - c)^{n+1}$ where $x \le x^* \le c$ and $\lim_{x \to +\infty} R_n(x) = 0$ $R_n(x) = 0(f(x))$		
Maclaurin Series	Taylor Series centered about $x = 0$. $f(x) \approx P_n(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$		
Example	$f(x) = e^{x}$ $f(x) = P_{8}(x) + R_{8}(x)$ $f(x) \approx P_{8}(x)$ $R_{8}(x) = P_{8}(x)'s Error Upper Bound$ $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text{ for all } x = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!} + \frac{x^{8}}{8!} + \cdots$ $P_{8}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!} + \frac{x^{8}}{8!}$ $R_{8}(\max x^{*} \text{ in } range) = \frac{(x^{*})^{9}}{9!}$ $R_{8}(x) = 0(x^{9})$		

Sources

- Dev (2025), Asymptotic Notations: A Comprehensive Guide.
 https://dev.to/princem/asymptotic-notations-a-comprehensive-guide-30i8
- Geeks for Geeks (20 Mar 2015).
 - Big O vs Theta Θ vs Big Omega Ω Notations.
 https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/
 - Analysis of algorithms | little o and little omega notations.
 https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-little-omega-notations/
- Rowell, Eric (2025). The Big-O Algorithm Complexity Cheat Sheet. https://www.bigocheatsheet.com/
- Wikipedia (2025).
 - o Big O notation. https://en.wikipedia.org/wiki/Big O notation
 - Master theorem (analysis of algorithms).
 https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)