
Copyright © 2025 by Harold Toomey, WyzAnt Tutor 1

Harold’s Big O
Cheat Sheet

22 September 2025

AKA Analysis of Algorithms

Asymptotic Notations

Term Definition

Bachmann–Landau Notation

• A family of asymptotic mathematical notations that
describe the limiting behavior of a function as the
argument tends towards infinity.

• Includes O, o, Ω, ω, and Θ.

• Omits constant factors (𝑎𝑛), lower-order terms, and
constants (𝑐).

Big O (O) The tight upper bound asymptotic growth rate of 𝑓(𝑛). GOOD

Big Omega (Ω) The tight lower bound asymptotic growth rate of 𝑓(𝑛).

Theta (Θ) The tight bound asymptotic growth rate of 𝑓(𝑛). BETTER

Little O (o) The loose upper bound asymptotic growth rate of 𝑓(𝑛).

Little Omega (𝝎) The loose lower bound asymptotic growth rate of 𝑓(𝑛).

Closed Form The exact solution, not just asymptotic. BEST

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 2

Big O (O) – Tight Upper Bound

Term Definition

What it Means

• The asymptotic tight upper bound of a function is represented by Big O
notation (O).

• Means “is of the same order as”.

• The rate of growth of an algorithm is ≤ a specific value.

• 𝑓(𝑛) grows no faster than 𝑔(𝑛).

• We are concerned with how 𝑓 grows when 𝑛 is large.

Definition
𝑓(𝑛) = 𝑶(𝑔(𝑛)) 𝑎𝑠 𝑛 → ∞

If there exist positive constants 𝑐 and 𝑛0 such that
0 ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0.

Graph

|𝑓(𝑛)| is asymptotically bounded above by 𝑔(𝑛) up to a constant factor 𝐶.

Examples
𝑓(𝑛) = 6𝑛4 − 2𝑛3 + 5 = 𝑂(𝑛4) Since |6𝑛4 − 2𝑛3 + 5| ≤ 13𝑛4

𝑓(𝑛) = 𝑛−3 + 𝑛−2 + 𝑛−1 = 𝑂(𝑛−1) 𝑛−1 is the largest exponential

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 3

Big Omega (Ω) – Tight Lower Bound

Term Definition

What it Means

• The asymptotic tight lower bound of a function is represented by Big

Omega notation (𝜴).

• The rate of growth of an algorithm is ≥ to a specific value.

• Big-Omega Ω notation is the least used notation for the analysis of
algorithms because it can make a correct but imprecise statement over
the performance of an algorithm.

Definition
𝑓(𝑛) = 𝜴(𝑔(𝑛)) 𝑎𝑠 𝑛 → ∞

If there exist positive constants 𝑐 and 𝑛0 such that
0 ≤ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0.

Graph

Examples 𝑓(𝑛) = 𝑠𝑖𝑛(𝑛) = 𝜴(1)

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 4

Theta (Θ) – Tight Bound

Term Definition

What it Means

• The exact asymptotic behavior, both upper and lower, is represented by
Theta notation (Θ).

• The rate of growth of an algorithm is = to a specific value.

• Provides the average time complexity of an algorithm.

Definition
𝑓(𝑛) = 𝜣(𝑔(𝑛)) 𝑎𝑠 𝑛 → ∞

If there exist positive constants 𝑐1, 𝑐2, and 𝑛0 such that
0 ≤ 𝑐1 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ∙ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0.

Graph

Example Linear search

Average case time complexity:

=
∑ 𝚯(𝑖)𝑛+1

𝑖=1

𝑛 + 1

⇒
𝚯(𝑛 + 1) ·

(𝑛 + 2)
2

𝑛 + 1

⇒ 𝚯 (1 +
𝑛

2
)

⇒ 𝚯(𝑛)

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 5

Little O (o) – Loose Upper Bound

Term Definition

What it Means

• The asymptotic loose upper bound of a function is represented by Little
O notation (o).

• Means “is ultimately smaller than”.

• o is a rough estimate of the maximum order of growth whereas O is
more accurate and may be the actual order of growth.

• 𝑔(𝑥) grows strictly faster than, or grows at least as fast as, 𝑓(𝑥).

• Is a stronger statement than Big-O since it is not asymptotically tight.

Definition

𝑓(𝑛) ∈ 𝒐(𝑔(𝑛))

If there exist positive constants 𝑐 and 𝑛0 such that
0 ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0.

𝑓(𝑛) ∈ 𝒐(𝑔(𝑛)) 𝑖𝑓 lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

Graph

Examples
𝑓(𝑛) =

1

𝑛
= 𝒐(1) lim

𝑛→∞

(
1
𝑛

)

1
= 0

𝑓(𝑛) = 7𝑛 + 8 = 𝒐(𝑛2) lim
𝑛→∞

7𝑛 + 8

𝑛2
= 0

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 6

Little Omega (𝝎) – Loose Lower Bound

Term Definition

What it Means

• The asymptotic loose lower bound of a function is represented by Little
Omega notation (𝝎).

• Means “is ultimately larger than”.

• 𝝎 is a rough estimate of the minimum order of growth whereas 𝜴 is
more accurate and may be the actual order of growth.

• 𝑓(𝑥) grows strictly faster than, or grows at least as fast as, 𝑔(𝑥).

• 𝝎 is a stronger statement than 𝜴 since it is not asymptotically tight.

Definition

𝑓(𝑛) ∈ 𝝎(𝑔(𝑛))

If there exist positive constants 𝑐 and 𝑛0 such that
0 ≤ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0.

𝑓(𝑛) ∈ 𝝎(𝑔(𝑛)) 𝑖𝑓 lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

Graph

Examples
𝑓(𝑛) = 4𝑛 + 6 = 𝝎(1) lim

𝑛→∞

4𝑛 + 6

1
= ∞

𝑓(𝑛) = 6𝑛2 − 4𝑛 + 6 = 𝝎(𝑛) lim
𝑛→∞

6𝑛2 − 4𝑛 + 6

𝑛
= ∞

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 7

Complexity

Term Definition

Comparing
Complexity

Complexity Classes

Ordered from smallest to largest impact.

Notation Name

𝑂(1) Constant

𝑂(𝛼(𝑛)) Inverse Ackermann function

𝑂(log(log(𝑛))) Double logarithmic

𝑂(log(𝑛)) Logarithmic

𝑂((log(𝑛))𝑐) where 𝑐 > 1 Polylogarithmic

𝑂(𝑛𝑐) where 0 < 𝑐 < 1 Fractional power

𝑂(𝑛) where 𝑐 = 1 Linear

𝑂(𝑛 log∗(𝑛)) n log-star n

𝑂(𝑛 log(𝑛)) = 𝑂(log(𝑛!)) Linearithmic

𝑂(𝑛2) Quadratic

𝑂(𝑛3) Cubic

𝑂(𝑛𝑐) where 𝑐 > 1 Polynomial or algebraic

𝑂(𝑐𝑛) Exponential

𝑂(𝑛!) Factorial

Examples

Ordered from smallest to largest.

Big O Justification

𝑂(10100)
It is a constant (rather large, but still a
constant).

𝑂(log10(𝑛)) Logs make large numbers small.

𝑂(𝑙𝑛(𝑛))
𝑙𝑛(𝑥) is larger than log10(𝑛), but is still a log so
the same as above.

𝑂(𝑛3 + 𝑛2) Polynomials can be large.

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 8

𝑂(𝑛3)
Same as 𝑂(𝑛3 + 𝑛2) since Big-O only cares
about the largest polynomial degree.

𝑂(𝑛100) Similar to 𝑂(𝑛3), but is much larger.

𝑂(1.1𝑛) Exponentials are larger than polynomials.

𝑂(3𝑛) Similar to 𝑂(1.1𝑛) but is larger.

𝑂(𝑛2𝑛)
Larger than the exponential 𝑂(3𝑛) since
multiplied by n.

𝑂(𝑛!) Factorials grow fastest of all.

Computer Science Application

Term Definition
Usage Analysis of algorithms.

Asymptotic Growth
Rates

Used to analyze and classify algorithms according to how their run time or
space requirements grow as the input size grows.

Master Theorem
Provides an asymptotic analysis for many recurrence relations that occur
in the analysis of divide-and-conquer algorithms.

General Recurrence
Relation Form

𝑻(𝒏) = 𝒂 𝑻 (
𝒏

𝒃
) + 𝒇(𝒏)

𝑛: Input size
𝑇(𝑛): Total time for the algorithm
𝑎: Number of subproblems
𝑏: Factor by which the subproblem size is reduced in each recursive call
(𝑏 > 1)
𝑓(𝑛) : Amount of time taken at the top level of the recurrence

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 9

Define 𝒄𝒄𝒓𝒊𝒕

𝑐𝑐𝑟𝑖𝑡 = 𝑙𝑜𝑔𝑏 𝑎 =
𝑙𝑜𝑔(# 𝑜𝑓 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠)

𝑙𝑜𝑔(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒)

Master Theorem Cases

Case Description
Condition on 𝒇(𝒏) in

relation to 𝒄𝒄𝒓𝒊𝒕,
i.e., 𝐥𝐨𝐠𝒃 𝒂

Master Theorem
bound

Notational
examples

1

Work to split /
recombine a
problem is
dominated by
subproblems.

i.e., the
recursion tree
is leaf-heavy.

When 𝑓(𝑛) =
𝑶(𝑛𝑐) where 𝑐 < 𝑐𝑐𝑟𝑖𝑡

(upper-bounded by a
lesser-exponent
polynomial)

... then
𝑇(𝑛) = 𝜣(𝑛𝑐𝑐𝑟𝑖𝑡)

(The splitting term
does not appear;
the recursive tree
structure
dominates.)

If 𝑏 = 𝑎2 and

𝑓(𝑛) = 𝑶(𝑛
1

2
−∈),

then

𝑇(𝑛) = 𝜣(𝑛
1

2).

2

Work to split /
recombine a
problem is
comparable to
subproblems.

When 𝑓(𝑛) =
𝜣(𝑛𝑐𝑐𝑟𝑖𝑡 (log 𝑛) 𝑘) for
a 𝑘 ≥ 0

(rangebound by the
critical-exponent
polynomial, times
zero or more
optional logs)

... then 𝑇(𝑛) =
𝜣(𝑛𝑐𝑐𝑟𝑖𝑡 (log 𝑛) 𝑘+1)

(The bound is the
splitting term,
where the log is
augmented by a
single power.)

If 𝑏 = 𝑎2 and

𝑓(𝑛) = 𝑶(𝑛
1

2), then

𝑇(𝑛) = 𝜣(𝑛
1

2 log 𝑛).

If 𝑏 = 𝑎2 and

𝑓(𝑛) = 𝑶(𝑛
1

2 log 𝑛),
then

𝑇(𝑛) =

𝜣(𝑛
1

2 (log 𝑛)2).

3

Work to split /
recombine a
problem
dominates
subproblems.

i.e., the
recursion tree
is root-
heavy.

When 𝑓(𝑛) = 𝜴(𝑛𝑐)
where 𝑐 > 𝑐𝑐𝑟𝑖𝑡

(lower-bounded by a
greater-exponent
polynomial)

... this doesn't
necessarily yield
anything.

Furthermore, if

𝑎𝑓 (
𝑛

𝑏
) ≤ 𝑘𝑓(𝑛) for

some constant
𝑘 < 1 and all
sufficiently large 𝑛

(often called
the regularity
condition)

then the total is
dominated by the
splitting term 𝑓(𝑛):

𝑇(𝑛) = 𝜣(𝑓(𝑛))

If 𝑏 = 𝑎2 and

𝑓(𝑛) = 𝑶(𝑛
1

2
+∈),

and the regularity
condition holds,

then
𝑇(𝑛) = 𝜣(𝑓(𝑛)).

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 10

Generating Functions

• 𝑇(𝑛) represents time, or the number of steps it takes, to complete
a problem of size 𝑛.

• Assume 𝑇(1) = 1.

• 𝜣(𝑓(𝑛)) ≈ exact solution.

Examples

Recursive Form Closed Form Exact Solution

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛 𝑇(𝑛) = 2𝑛2 − 𝑛

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 10𝑛 𝑇(𝑛) = 𝑛 + 10𝑛 log2 𝑛

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛2 𝑇(𝑛) = 2𝑛2 − 𝑛

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛2 𝑇(𝑛) = 𝑛2 ∙ 𝑙𝑜𝑔2(𝑛) + 𝑛2 + 𝑛 − 2

𝑇(𝑛) = 8𝑇 (
𝑛

2
) + 1000𝑛2 𝑇(𝑛) = 1001𝑛3 − 1000𝑛2

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛2 𝑙𝑜𝑔2(𝑛)

𝑇(𝑛) =
1

2
𝑛2 ∙ (𝑙𝑜𝑔2(𝑛))2

 +
1

2
𝑛2 ∙ 𝑙𝑜𝑔2(𝑛) + 𝑛2

Closed Form Tool

Use my Big O spreadsheet to iteratively help you find the exact closed-
form solution from a recursive generating function 𝑇(𝑛).

Harolds_Big_O_Calculator.xlsx

𝑇(𝑛) = 𝑨𝑛! + 𝑩3𝑛 + 𝑪2𝑛 + 𝑫𝑛3 + 𝑬(𝑛 log2(𝑛))2 + 𝑭𝑛2 log2(𝑛)
+ 𝑮𝑛2 log2(log2(𝑛)) + 𝑯𝑛2 + 𝑰(𝑛 log2(𝑛))

+ 𝑱(𝑛 log2(log2(𝑛))) + 𝑲(log2(𝑛))2 + 𝑳𝑛 + 𝑴√𝑛2

+ 𝑵√𝑛
3

+ 𝑶 log2(𝑛) + 𝑷1

https://www.toomey.org/tutor/harolds_cheat_sheets/Harolds_Big_O_Calculator.xlsx

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 11

Mathematics Application

Term Definition

Usage
Is commonly used to describe how closely a finite series approximates a
given function, especially in the case of a truncated Taylor series.

Taylor Series

𝑓(𝑥) = 𝑃𝑛(𝑥) + 𝑅𝑛(𝑥)

𝑃𝑛(𝑥) = ∑
𝑓(𝑛)(𝑐)

𝑛!

+∞

𝑛=0

 (𝑥 − 𝑐)𝑛

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥∗)

(𝑛 + 1)!
 (𝑥 − 𝑐)𝑛+1

where 𝑥 ≤ 𝑥∗ ≤ 𝑐 and lim
𝑥→+∞

𝑅𝑛(𝑥) = 0

𝑅𝑛(𝑥) = 𝑶(𝑓(𝑥))

Maclaurin Series

 Taylor Series centered about 𝑥 = 0.

𝑓(𝑥) ≈ 𝑃𝑛(𝑥) = ∑
𝑓(𝑛)(0)

𝑛!

+∞

𝑛=0

 𝑥𝑛

Example

𝑓(𝑥) = 𝑒𝑥
𝑓(𝑥) = 𝑃8(𝑥) + 𝑅8(𝑥)

𝑓(𝑥) ≈ 𝑃8(𝑥)
𝑅8(𝑥) = 𝑃8(𝑥)′𝑠 𝐸𝑟𝑟𝑜𝑟 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

 for all 𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!
+ ⋯

𝑃8(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!

𝑅8(max 𝑥∗ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒) =
(𝑥∗)9

9!

𝑹𝟖(𝒙) = 𝑶(𝒙𝟗)

Copyright © 2025 by Harold Toomey, WyzAnt Tutor 12

Sources

• Dev (2025), Asymptotic Notations: A Comprehensive Guide.

https://dev.to/princem/asymptotic-notations-a-comprehensive-guide-30i8

• Geeks for Geeks (20 Mar 2015).

o Big O vs Theta Θ vs Big Omega Ω Notations.

https://www.geeksforgeeks.org/difference-between-big-oh-big-

omega-and-big-theta/

o Analysis of algorithms | little o and little omega notations.

https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-

little-omega-notations/

• Rowell, Eric (2025). The Big-O Algorithm Complexity Cheat Sheet.

https://www.bigocheatsheet.com/

• Wikipedia (2025).

o Big O notation. https://en.wikipedia.org/wiki/Big_O_notation

o Master theorem (analysis of algorithms).

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorith

ms)

https://dev.to/princem/asymptotic-notations-a-comprehensive-guide-30i8
https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/
https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/
https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-little-omega-notations/
https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-little-omega-notations/
https://x.com/ericdrowell
https://www.bigocheatsheet.com/
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

