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Harold’s Big O 
Cheat Sheet 

22 September 2025 

 
AKA Analysis of Algorithms 

 
Asymptotic Notations 
 

Term Definition 

Bachmann–Landau Notation 

• A family of asymptotic mathematical notations that 
describe the limiting behavior of a function as the 
argument tends towards infinity. 

• Includes O, o, Ω, ω, and Θ. 

• Omits constant factors (𝑎𝑛), lower-order terms, and 
constants (𝑐). 

Big O (O) The tight upper bound asymptotic growth rate of 𝑓(𝑛).  GOOD 

Big Omega (Ω) The tight lower bound asymptotic growth rate of 𝑓(𝑛). 

Theta (Θ) The tight bound asymptotic growth rate of 𝑓(𝑛).  BETTER 

Little O (o) The loose upper bound asymptotic growth rate of 𝑓(𝑛). 

Little Omega (𝝎) The loose lower bound asymptotic growth rate of 𝑓(𝑛). 

Closed Form The exact solution, not just asymptotic.  BEST 
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Big O (O) – Tight Upper Bound 
 

Term Definition 

What it Means 

• The asymptotic tight upper bound of a function is represented by Big O 
notation (O). 

• Means “is of the same order as”. 

• The rate of growth of an algorithm is ≤ a specific value.  

• 𝑓(𝑛) grows no faster than 𝑔(𝑛). 

• We are concerned with how 𝑓 grows when 𝑛 is large. 

Definition 
𝑓(𝑛) = 𝑶(𝑔(𝑛)) 𝑎𝑠 𝑛 → ∞ 

If there exist positive constants 𝑐 and 𝑛0 such that 
0 ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

Graph 

|𝑓(𝑛)| is asymptotically bounded above by 𝑔(𝑛) up to a constant factor 𝐶. 

 
 

Examples 
𝑓(𝑛) = 6𝑛4 − 2𝑛3 + 5 = 𝑂(𝑛4) Since |6𝑛4 − 2𝑛3 + 5| ≤ 13𝑛4 

𝑓(𝑛) = 𝑛−3 + 𝑛−2 + 𝑛−1 = 𝑂(𝑛−1) 𝑛−1 is the largest exponential 

 

 
  



Copyright © 2025 by Harold Toomey, WyzAnt Tutor                                           3 

Big Omega (Ω) – Tight Lower Bound 
 

Term Definition 

What it Means 

• The asymptotic tight lower bound of a function is represented by Big 

Omega notation (𝜴). 

• The rate of growth of an algorithm is ≥ to a specific value. 

• Big-Omega Ω notation is the least used notation for the analysis of 
algorithms because it can make a correct but imprecise statement over 
the performance of an algorithm. 

Definition 
𝑓(𝑛) = 𝜴(𝑔(𝑛)) 𝑎𝑠 𝑛 → ∞ 

If there exist positive constants 𝑐 and 𝑛0 such that 
0 ≤ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

Graph 

 
Examples 𝑓(𝑛) = 𝑠𝑖𝑛(𝑛) = 𝜴(1)  
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Theta (Θ) – Tight Bound 
 

Term Definition 

What it Means 

• The exact asymptotic behavior, both upper and lower, is represented by 
Theta notation (Θ). 

• The rate of growth of an algorithm is = to a specific value. 

• Provides the average time complexity of an algorithm. 

Definition 
𝑓(𝑛) = 𝜣(𝑔(𝑛)) 𝑎𝑠 𝑛 → ∞ 

If there exist positive constants 𝑐1, 𝑐2, and 𝑛0 such that 
0 ≤ 𝑐1 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ∙ 𝑔(𝑛)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

Graph 

 

Example Linear search 

Average case time complexity: 

=
∑ 𝚯(𝑖)𝑛+1

𝑖=1

𝑛 + 1
 

⇒
𝚯(𝑛 + 1) ·  

(𝑛 + 2)
2

𝑛 + 1
 

⇒ 𝚯 (1 +
𝑛

2
) 

⇒ 𝚯(𝑛) 
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Little O (o) – Loose Upper Bound 
 

Term Definition 

What it Means 

• The asymptotic loose upper bound of a function is represented by Little 
O notation (o). 

• Means “is ultimately smaller than”. 

• o is a rough estimate of the maximum order of growth whereas O is 
more accurate and may be the actual order of growth.  

• 𝑔(𝑥) grows strictly faster than, or grows at least as fast as, 𝑓(𝑥). 

• Is a stronger statement than Big-O since it is not asymptotically tight. 

Definition 

𝑓(𝑛) ∈ 𝒐(𝑔(𝑛)) 

If there exist positive constants 𝑐 and 𝑛0 such that 
0 ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

 

𝑓(𝑛) ∈ 𝒐(𝑔(𝑛)) 𝑖𝑓 lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0 

Graph 

 

Examples 
𝑓(𝑛) =

1

𝑛
= 𝒐(1) lim

𝑛→∞

(
1
𝑛

)

1
= 0 

𝑓(𝑛) = 7𝑛 + 8 = 𝒐(𝑛2) lim
𝑛→∞

7𝑛 + 8

𝑛2
= 0 
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Little Omega (𝝎) – Loose Lower Bound 
 

Term Definition 

What it Means 

• The asymptotic loose lower bound of a function is represented by Little 
Omega notation (𝝎). 

• Means “is ultimately larger than”. 

• 𝝎 is a rough estimate of the minimum order of growth whereas 𝜴 is 
more accurate and may be the actual order of growth.  

• 𝑓(𝑥) grows strictly faster than, or grows at least as fast as, 𝑔(𝑥). 

• 𝝎 is a stronger statement than 𝜴 since it is not asymptotically tight. 

Definition 

𝑓(𝑛) ∈ 𝝎(𝑔(𝑛)) 

If there exist positive constants 𝑐 and 𝑛0 such that 
0 ≤ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

 

𝑓(𝑛) ∈ 𝝎(𝑔(𝑛)) 𝑖𝑓 lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞ 

Graph 

 

Examples 
𝑓(𝑛) = 4𝑛 + 6 = 𝝎(1) lim

𝑛→∞

4𝑛 + 6

1
= ∞ 

𝑓(𝑛) = 6𝑛2 − 4𝑛 + 6 = 𝝎(𝑛) lim
𝑛→∞

6𝑛2 − 4𝑛 + 6

𝑛
= ∞ 
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Complexity 
 

Term Definition 

Comparing 
Complexity 

 

 
 

Complexity Classes 

Ordered from smallest to largest impact. 

Notation Name 

𝑂(1) Constant 

𝑂(𝛼(𝑛)) Inverse Ackermann function 

𝑂(log(log(𝑛))) Double logarithmic 

𝑂(log(𝑛)) Logarithmic 

𝑂((log(𝑛))𝑐) where 𝑐 > 1 Polylogarithmic 

𝑂(𝑛𝑐) where 0 < 𝑐 < 1 Fractional power 

𝑂(𝑛) where 𝑐 = 1 Linear 

𝑂(𝑛 log∗(𝑛)) n log-star n 

𝑂(𝑛 log(𝑛)) = 𝑂(log(𝑛!)) Linearithmic 

𝑂(𝑛2) Quadratic 

𝑂(𝑛3) Cubic 

𝑂(𝑛𝑐) where 𝑐 > 1 Polynomial or algebraic 

𝑂(𝑐𝑛) Exponential 

𝑂(𝑛!) Factorial 

Examples 

Ordered from smallest to largest. 

Big O Justification 

𝑂(10100) 
It is a constant (rather large, but still a 
constant). 

𝑂(log10(𝑛)) Logs make large numbers small. 

𝑂(𝑙𝑛(𝑛)) 
𝑙𝑛(𝑥) is larger than log10(𝑛), but is still a log so 
the same as above. 

𝑂(𝑛3 + 𝑛2) Polynomials can be large. 
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𝑂(𝑛3) 
Same as 𝑂(𝑛3 + 𝑛2) since Big-O only cares 
about the largest polynomial degree. 

𝑂(𝑛100) Similar to 𝑂(𝑛3), but is much larger. 

𝑂(1.1𝑛) Exponentials are larger than polynomials. 

𝑂(3𝑛) Similar to 𝑂(1.1𝑛) but is larger. 

𝑂(𝑛2𝑛) 
Larger than the exponential 𝑂(3𝑛) since 
multiplied by n. 

𝑂(𝑛!) Factorials grow fastest of all. 

 

Computer Science Application 
 

Term Definition 
Usage Analysis of algorithms. 

Asymptotic Growth 
Rates 

Used to analyze and classify algorithms according to how their run time or 
space requirements grow as the input size grows. 

 

 
 

Master Theorem 
Provides an asymptotic analysis for many recurrence relations that occur 
in the analysis of divide-and-conquer algorithms. 

General Recurrence 
Relation Form 

𝑻(𝒏) = 𝒂 𝑻 (
𝒏

𝒃
) + 𝒇(𝒏) 

 
𝑛: Input size 
𝑇(𝑛): Total time for the algorithm 
𝑎: Number of subproblems 
𝑏: Factor by which the subproblem size is reduced in each recursive call 
(𝑏 > 1) 
𝑓(𝑛) : Amount of time taken at the top level of the recurrence 



Copyright © 2025 by Harold Toomey, WyzAnt Tutor                                           9 

Define 𝒄𝒄𝒓𝒊𝒕 

 

𝑐𝑐𝑟𝑖𝑡 = 𝑙𝑜𝑔𝑏 𝑎 =
𝑙𝑜𝑔(# 𝑜𝑓 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠)

𝑙𝑜𝑔(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒)
 

 

 

Master Theorem Cases 
 

Case Description 
Condition on 𝒇(𝒏) in 

relation to 𝒄𝒄𝒓𝒊𝒕,  
i.e., 𝐥𝐨𝐠𝒃 𝒂 

Master Theorem 
bound 

Notational 
examples 

1 

Work to split / 
recombine a 
problem is 
dominated by 
subproblems. 

i.e., the 
recursion tree 
is leaf-heavy. 

When 𝑓(𝑛) =
𝑶(𝑛𝑐) where 𝑐 < 𝑐𝑐𝑟𝑖𝑡 
 
(upper-bounded by a 
lesser-exponent 
polynomial) 

... then  
𝑇(𝑛) = 𝜣(𝑛𝑐𝑐𝑟𝑖𝑡)  
 
(The splitting term 
does not appear; 
the recursive tree 
structure 
dominates.) 

If 𝑏 = 𝑎2 and 

𝑓(𝑛) = 𝑶(𝑛
1

2
−∈), 

then 

𝑇(𝑛) = 𝜣(𝑛
1

2). 

2 

Work to split / 
recombine a 
problem is 
comparable to 
subproblems. 

When 𝑓(𝑛) =
𝜣(𝑛𝑐𝑐𝑟𝑖𝑡  (log 𝑛) 𝑘) for 
a 𝑘 ≥ 0 
 
(rangebound by the 
critical-exponent 
polynomial, times 
zero or more 
optional logs) 

... then 𝑇(𝑛) =
𝜣(𝑛𝑐𝑐𝑟𝑖𝑡  (log 𝑛) 𝑘+1) 
 
(The bound is the 
splitting term, 
where the log is 
augmented by a 
single power.) 

If 𝑏 = 𝑎2 and 

𝑓(𝑛) = 𝑶(𝑛
1

2), then 

𝑇(𝑛) = 𝜣(𝑛
1

2 log 𝑛). 
 

If 𝑏 = 𝑎2 and 

𝑓(𝑛) = 𝑶(𝑛
1

2 log 𝑛), 
then 

𝑇(𝑛) =

𝜣(𝑛
1

2 (log 𝑛)2). 

3 

Work to split / 
recombine a 
problem 
dominates 
subproblems. 
 
i.e., the 
recursion tree 
is root-
heavy. 

When 𝑓(𝑛) = 𝜴(𝑛𝑐) 
where 𝑐 > 𝑐𝑐𝑟𝑖𝑡 

 
(lower-bounded by a 
greater-exponent 
polynomial) 

... this doesn't 
necessarily yield 
anything.  

Furthermore, if 

𝑎𝑓 (
𝑛

𝑏
) ≤ 𝑘𝑓(𝑛) for 

some  constant 
𝑘 < 1 and all 
sufficiently large 𝑛 

(often called 
the regularity 
condition) 

then the total is 
dominated by the 
splitting term 𝑓(𝑛): 

𝑇(𝑛) = 𝜣(𝑓(𝑛)) 

If 𝑏 = 𝑎2 and 

𝑓(𝑛) = 𝑶(𝑛
1

2
+∈), 

and the regularity 
condition holds, 

then  
𝑇(𝑛) = 𝜣(𝑓(𝑛)). 
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Generating Functions 

• 𝑇(𝑛) represents time, or the number of steps it takes, to complete 
a problem of size 𝑛.   

• Assume 𝑇(1) = 1.   

• 𝜣(𝑓(𝑛)) ≈ exact solution. 

Examples 

Recursive Form Closed Form Exact Solution 

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛 𝑇(𝑛) = 2𝑛2 − 𝑛 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 10𝑛 𝑇(𝑛) = 𝑛 + 10𝑛 log2 𝑛 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛2 𝑇(𝑛) = 2𝑛2 − 𝑛 

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛2 𝑇(𝑛) = 𝑛2 ∙ 𝑙𝑜𝑔2(𝑛) + 𝑛2 + 𝑛 − 2 

𝑇(𝑛) = 8𝑇 (
𝑛

2
) + 1000𝑛2 𝑇(𝑛) = 1001𝑛3 − 1000𝑛2 

𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛2 𝑙𝑜𝑔2(𝑛) 

𝑇(𝑛) =
1

2
𝑛2 ∙ (𝑙𝑜𝑔2(𝑛))2 

                +
1

2
𝑛2 ∙ 𝑙𝑜𝑔2(𝑛) + 𝑛2 

Closed Form Tool 

Use my Big O spreadsheet to iteratively help you find the exact closed-
form solution from a recursive generating function 𝑇(𝑛). 

Harolds_Big_O_Calculator.xlsx 

𝑇(𝑛) = 𝑨𝑛! + 𝑩3𝑛 + 𝑪2𝑛 + 𝑫𝑛3 + 𝑬(𝑛 log2(𝑛))2 + 𝑭𝑛2 log2(𝑛)
+ 𝑮𝑛2 log2(log2(𝑛)) + 𝑯𝑛2 + 𝑰(𝑛 log2(𝑛))

+ 𝑱(𝑛 log2(log2(𝑛))) + 𝑲(log2(𝑛))2 + 𝑳𝑛 + 𝑴√𝑛2

+ 𝑵√𝑛
3

+ 𝑶 log2(𝑛) + 𝑷1 
 

 
 

https://www.toomey.org/tutor/harolds_cheat_sheets/Harolds_Big_O_Calculator.xlsx
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Mathematics Application 
 

Term Definition 

Usage 
Is commonly used to describe how closely a finite series approximates a 
given function, especially in the case of a truncated Taylor series. 

Taylor Series 

𝑓(𝑥) = 𝑃𝑛(𝑥) + 𝑅𝑛(𝑥) 

𝑃𝑛(𝑥) = ∑
𝑓(𝑛)(𝑐)

𝑛!

+∞

𝑛=0

 (𝑥 − 𝑐)𝑛 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥∗)

(𝑛 + 1)!
 (𝑥 − 𝑐)𝑛+1 

where  𝑥 ≤  𝑥∗ ≤ 𝑐 and lim
𝑥→+∞

𝑅𝑛(𝑥) = 0 

𝑅𝑛(𝑥) = 𝑶(𝑓(𝑥)) 

Maclaurin Series 

    Taylor Series centered about 𝑥 = 0. 

𝑓(𝑥) ≈ 𝑃𝑛(𝑥) = ∑
𝑓(𝑛)(0)

𝑛!

+∞

𝑛=0

 𝑥𝑛 

Example 

𝑓(𝑥) = 𝑒𝑥 
𝑓(𝑥) = 𝑃8(𝑥) + 𝑅8(𝑥) 

𝑓(𝑥) ≈ 𝑃8(𝑥) 
𝑅8(𝑥) = 𝑃8(𝑥)′𝑠 𝐸𝑟𝑟𝑜𝑟 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

  for all 𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!
+ ⋯ 

𝑃8(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!
 

𝑅8(max 𝑥∗ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒) =
(𝑥∗)9

9!
 

𝑹𝟖(𝒙) = 𝑶(𝒙𝟗) 
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https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorith

ms)  

 

https://dev.to/princem/asymptotic-notations-a-comprehensive-guide-30i8
https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/
https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/
https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-little-omega-notations/
https://www.geeksforgeeks.org/analysis-of-algorithems-little-o-and-little-omega-notations/
https://x.com/ericdrowell
https://www.bigocheatsheet.com/
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

