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Definitions

	Name
	Definition or Formula

	Imaginary Number
	



 is used by mathematicians. 
 is used by electrical engineers.

	Complex Number
	[image: Complex number - Wikipedia]
Rectangular Form :


Polar Form :

Exponential Form ():

Parametric Form :


Shorthand:


	Complex Conjugate
	



	Modulus
(Magnitude/Absolute Value)
	



	Argument
(Angle)
	
If  then principle value

	Euler’s Formula
	
Examples:





	De Moivre’s Formula
	


	Holomorphic Function
(Analytic Function)
	A complex variable function whose derivative exists at any point.

	Meromorphic Function
	A complex variable function that is holomorphic except in set points, which are poles.

	Entire
	A holomorphic function that is holomorphic .

	Reflection Principle
	
If the lower half is the reflection of the upper half over the x-axis.

	[image: ]

	[image: See the source image]


Algebraic Properties

	Property
	Formula

	Complex Numbers
	







	Additive Inverses
	


	Multiplicative Inverses
	


	Complex Conjugates
	





	Triangle Inequality
	



	Exponentials
	


	Roots
	

	Arguments
(Angles)
	









Transcendental Properties

	Property
	Formula

	Power
	



	Logarithms
	





	Trigonometric
	












	Hyperbolic
	











	Inverse Trigonometric
	







	Inverse Hyperbolic
	








Functions

	Name
	Formula

	Functions
	


	Conic Mappings
	Hyperbola (Rectangular Form):




[image: A diagram of a graph

Description automatically generated]

Circle (Polar Form):





[image: A black and white image of a curved line

Description automatically generated]





Differentiation

	Name
	Formula

	Cauchy-Riemann Equations
	Determines whether the given complex-valued function  is analytic and differentiable.

Rectangular Form:





Polar Form:




	Laplace’s Equation
(Harmonic)
	





Contours

	Name
	Definition

	Simple Arc (C)
(Jordan arc)
	If arc C does not cross itself; that is, C is simple if  when .  E.g., open.

	Contour (C)
	A closed path in the complex plane.  
A piecewise smooth arc consisting of a finite number of smooth arcs joined end to end.

	Simple Curve (C)
	A simple arc where . E.g., closed.
	Simple closed curve

[image: A closed curve]


	
	Simple closed curve C defaults to a circle, , centered at 0 with radius  and interval , oriented counterclockwise.


	[image: ]

	Positively Oriented
	a simple closed curve, or a Jordan curve, is positively oriented when it is in the counterclockwise direction.

	Simply Connected Domain
	 is a domain such that every simple closed contour within it encloses only points of 

	Branch Cut
	A portion of a line or curve that is introduced to define a
branch  of a multiple-valued function .

	Regions Bound by Curve C
	: Bounded
[image: ]

	: Unbounded[image: ]


	Closed, Simple, Counter-Clockwise Oriented Curve
	One Point, Simple Pole:

[image: ]

	Multiple Points, Simple Poles:

[image: ]



Integration

	Name
	Formula

	Complex Integration
	

“No corresponding helpful interpretation, geometric or physical, is available for integrals in the complex plane.” (Brown & Churchill, p.125)

	Contour Integral (Complex )
	Called a Line Integral if Real  numbers.


Change of Contour direction:

	[image: Line Integral: Vector Field and Applications]

	Fundamental Theorem of Calculus with Contour Integral
	

Since  and .
where  is a point within the contour .

	Morera’s Theorem
	If   then,  is Holomorphic over .

	Cyclic Integral
	
Integral over a closed contour meaning the curve returns to its initial position ().

For circular contours, 

For non-circular contours,

[image: ]
Parameterize the arcs and identify the bounds of integration.




	Cauchy-Goursat Theorem
(Cauchy’s Integral Theorem)
	: If C is closed, i.e., , then


: Outside of closed C, at infinity ():
If

Then


	Cauchy Integral Formula
	Turns a contour integral into a derivative.
Simple:

General:



	Jordan’s Lemma
	Estimation Lemma:


Common Application:
If

Then



 semi-circle radius along this line.





Poles and Residues

	Name
	Formula

	Poles
	Roots in the denominator of a complex function that is holomorphic (complex differential).  E.g., Singularity, vertical asymptote.
	[image: complex analysis - pole on the contour using the residu theorem, what is  this formula of Plemelj? - Mathematics Stack Exchange]

	
	Poles are zeros in the denominator of .

Simple Pole:


High-Order Pole:


Theorem: If  is a pole of function , then


	
Residue
	


Observation: Since is a simple pole, then the  turns the function  into a function with a hole or hollow point.  The limit makes the remaining function appear continuous.  “Remove the pole and cover the hole.”

Tip: If Laurent Series centered at 0, then 
 the  term of .

	Cauchy’s Residue Theorem
(Simple Poles)
	One Point, Simple Pole inside Contour C:
If exists

Then


	
	Multiple Points, Simple Poles inside Contour C:
If these exist


+ ... +

Then


	
	Special Case:
If  is even, then


	Residue of High-Order Poles
	General:
Works with higher-order poles.

 then

Simple:


Tip: 



	Residue of Simple Poles
(shortcut)
	Theorem: Let two functions  and  be analytic at a point .  If



then  is a simple pole of the quotient  and


	Zeros and Poles
	Theorem: Suppose that:
(a) two functions  and  are analytic at a point ;
(b)  and  has a zero of order  at .
Then the quotient has a pole of order  at .





Series

	Name
	Formula

	Liouville’s Theorem
	If a function  is entire and bounded in the complex plane, then 
is constant throughout the plane.

	Fundamental Theorem of Algebra
	


Any polynomial of degree  has at least one zero in the complex plane. That is, there exists at least one point  such that.

	Maximum Modulus Principle
	Theorem: If a function  is analytic and not constant in a given domain , then the modulus  has no maximum value in . That is, there is no point  in the domain such that  for all points  in it.

	
	Corollary: Suppose that a function  is continuous on a closed bounded region  and that it is analytic and not constant in the interior of . Then the maximum value of  in , which is always reached, occurs somewhere on the boundary of  and never in the interior.

	Complex Variable Convergence
	



	Complex Series Convergence
	



	Series Convergence
	Corollary 1: If a series of complex numbers converges, the nth term converges to zero as n tends to infinity.

Corollary 2: The absolute convergence of a series of complex numbers implies the convergence of that series.

	Annular Domain

	[image: A diagram of a circle with a circle and lines

Description automatically generated]

	Transcendental Series
	See Harold’s Taylor Series Cheat Sheet for a comprehensive list of the Maclaurin series of all transcendental functions.

	Taylor Series
	


Series converges to  when  lies in the stated open disk.
If , then Maclaurin series.
[image: undefined]

	Laurent Series
	



[image: undefined]
Taylor Series Form:



If no poles, then Taylor series.


Power Series

	Name
	Formula

	Power Series
	


	Absolute and Uniform Convergence
	Theorem 1: If a power series converges when

then it is absolutely convergent at each point  in the open disk


	
	Theorem 2: If  is a point inside the circle of convergence  of a power series then that series must be uniformly convergent in the closed disk


	Continuity of Sums
	Theorem: A power series represents a continuous function  at each point inside its circle of convergence .

	Integration
	Theorem: Let  denote any contour interior to the circle of convergence of the power series and let  be any function that is continuous on . The series formed by multiplying each term of the power series by  can be integrated term by term over ; that is,


	Differentiation
	Theorem: The power series can be differentiated term by term. That is, at each point  interior to the circle of convergence of that series,


	Leibniz’s Rule for the nth Derivative
	



	Uniqueness Representations
	Theorem 1: If a power series converges to  at all points interior to some circle , then it is the Taylor series expansion for  in powers of .

	
	Theorem 2: If a series

converges to  at all points in some annular domain about , then it is the Laurent series expansion for  in powers of  for that domain.

	Multiplication
	

	
	

	Division
	


College Course
· Course: NYU MATH-UY-4434: Applied Complex Variables, 2024.
· Textbook: Complex Variables and Applications, 9th  Edition, Chapters 1-7, James Ward Brown & Ruel V. Churchill, McGraw-Hill Education, 2014.
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Introductory Complex Analysis Cheat Sheet

Field of Complex Numbers

We construct the field of complex numbers as the following quotient ring,
C = Rle)/(® + 1)
Algebra of Complex Numbers

o Addition: (a + ) + (c+ ¢ i(b+d)

¢ Multiplication: (a bd) + i(ad + bc)
b (ac+ bd) +i(bc— ad)

PP a
¢ Division:

ctid 21 d?
V SvELS L wawm)

® Square root: v/a 4 b = £

e Rla+ i) =0a,F(a+ib)=b

Conjugation, Absolute Value

e Complex conjugation: a +ib=a—ib
—atb=a+b
-ab=a-b
Geometrically, conjugation is reflection over the real axis.
e Absolute value: |a| = ++v/aa
~ |ab| = [a] - 3] )
— |+ b = |af? + [b[2 + 25%(ab)
— Ja—b? = laf2 + [b[2 — 25%(ab)
~ Ja+ b2 + o — b2 = 2(|a]? + [b[?)
he absolute value function forms the metric on C. C is complete under
his metric.

ic Topological definitions in C
basic results:
For zg € C,r > 0 we denote the ball (i.e. disk) of radius r around 2 to
be B(zp,7) ={z€ C| |z — 2| <7}
e Apoint z € Cis alimit point of £ C Cif Ve > 0, B(z,£) N F contains a
point other than z.
* Asubset F C Cissaid tobeopenifVz € E,3r > 0,s.t. B(z,r) C E.
* Asubset E C Cissaid to be closed, if C\ E'is open in C. Or equivalently
a set which contains all its limit points.
Some properties of open sets:
e Cand J are open subsets of C.
¢ All finite intersections of open sets are open sets.
® The collection of all open sets on C form a topology on C.
Interior, closure, density
o Interior: Let £ C C. The interior of F is defined as, E°=set of all interior
points of E, or equivalently, U{Q} | 2 C E AQis open in C}
® Closure: Let E C C. The closure of E is defined as «A{F | B C
F A Fisclosed in C}
* Density: Let £ C D, the closure of £ in D is D. Then F is called dense
inD.
Path : A path in a metric space from a point # € X toy € Y is a continuous
mapping v : [0,1] = X s.t. y(0) =z and v(1) = v.
Separated and Connected
For a metric space (X, d).
* Separated: X is separated if 3 disjoint non-empty open subsets A, B of
Xst. X=AUB.
¢ Connected:
— X is connected if it has no separation.
— X is connected <= X does not contain a proper subset of X
which is both open and closed in X.
— Continuous functions preserve connectedness.
— An open subset € C is connected <= for z,w € (1, there exists
a path from z to w.

Basic Topological definitions in C contd.

Open cover: Let (X, d) be a metric space and £ be a collection of open sets in
X. We say that % is an open cover of asubset K C X, if K C | {% | % € E}
Compactness: For some K C X is compact if for every open cover F of K,
there exists By, -+ .E, € Est. K C UL Fy,, ie. itis compact if it has a finite
open cover.

¢ In a metric space, a compact set is closed.

* A closed subset of a compact set is closed.

Limit point compact: We say a metric space X is limit point compact if every
infinite subset of X has a limit point.

e If X is a compact metric space, then it is also limit point compact.
Sequentially compact: We say a metric space X is sequentially compact if
every sequence has a convergent sub-sequence.

e If X is limit point compact then X is sequentially compact.

* Let X be sequentially compact, then X is a compact metric space.
Lebesgue number lemma: Let X be sequentially compact, and let % be an
open cover of X. Then3 4§ > Ost. forz € X, Ju € % s.t. B(z,0) C u.

Isometries on the Complex Plane

A function f : C — Ciscalled an isometryif | f(z)— f(w)| = |z—w]|,Vz,w € C.
e Let f bean isometry s.t. f(0) = 0, then the inner product (f(z), f(w)) =
(z,w),¥z,we C.

e If f isanisometry s.t. f(0) = O then £ is a linear map.
¢ The standard argument for a + i € C, Arg(a +ib) = tan~12

a

Functions on the Complex Plane

Uniform convergence: LetQ C Cand fi, -, fp : @ — C be a set of func-
tions on Q. We say, {f}nen converges uniformly to f if givene > 0,In € N
st | fu(z) — f(2)] <e,VzeQandn > N.

Complex exponential: For z € C, exp(z) =}

o0 "
n=0 nl
Trigonometric functions: For z € C, cos(z) = &—=2— and sin(z) = £

Hyperbolic trigonometric functions: For z € C, cosh(z) = £ and

sinh(z) = €

Complex differentiability

Complex derivative: Let @ € C and f : & — C, we say that f is complex
differentiable at a point 25 € Q if 2o is an interior point and the following limit
exists lim, ., M . The limit is denoted as f/(z) or df(z)
Holomorphic functions: If f:Q — Ciscomplex dlfferentlable at every point
z € , then f is said to be a holomorphic on . Entire function: Functions
which are complex differentiable on C are called entire functions.
Complex differentiability implies continuity.
Complex derivatives of a function are linear transformations.
Product rule: If f,g : & — C are complex differentiable at z, € Q.
Then fg is complex differentiable at zp with derivative f/(z0)g(z0) +
' (z0) f(z0).-
Quotient rule: If f, g : @ — C are complex differentiable at z; € 2, and

’ ' .
g doesn’t vanish at z5. Then (% (z0) = W

Chain rule: If f : @ — Cand g : D — C are complex differentiable at
20 € Q and f() € D. Then g(/(x))'(z0) — 9/ (/ (:0)) " (z0)

Power Series

Formal Power Series: A formal power series around 2, € C is a formal expan-
sion 3007 an(z — 20)™, where a, € C and z is indeterminate.
Radius of convergence: For a formal power series 3 a,,(z — z)™ the radius
of convergence R € [0,00] given by R = liminf,,_,co |ax|~1/* Using the ratio
test is identical i.e. R = liminf, .. ‘a‘jﬂ I
¢ The series converges absolutely when z € B(zg, R), and for r < R, the
series converges uniformly, else if |z — zg| > R the series diverges.
e Letz € Csdt. |z — 29| > R, then Jinfinitely many n € N s.t. |a,| /" <
|z — zp].
Abel’s Theorem: Let Fi(z) = Y7 an(z — zo)™ be a power series with a pos-
itive radius of convergence R, suppose z; = 2y + Re®® be a point s.t. F'(z;)

converges. Then lim,_, g Fzo +re?) = F(z1)

Differentiation of Power Series

Let F(z) = > o4 an(z — 20)" be a power series around 2z with a radius of
convergence R. Then F is holomorphic in B(z, R).

o F(z) = E;’ozl nan(z — 7)™~ with same radius of convergence R.

® apn
Cauchy prodgct of two power series: For power series F'(2) = 3 an (2 — 20)"
and G(2) = > an(z — 20)" with degree of convergence at least R. Then the
Cauchy product F(2)G(z) = X calz — 20)" where e, = 31 axba—g also has
degree of convergence at least R.

Cauchy-Riemann Differential Equations

For a complex function f(z) = u(z) + w(z),

Fi(z) =28+ or f/(z) = —i5% 4 &

Therefore, we get the two Cauchy-Riemann Differential equations,
Bu v ou Ov

- - . M

Bz 1y dy oz
A function is holomorphic 1ff it satisfies the Cauchy-Riemann equations.

Wirtinger derivatives:

8 1/8 190 8 178 148
'&**(a*;a) '%**(a*ﬁy
If f is holomorphic at zg then =0and f(z) = f:(zo) =28 (%))

Harmonic Functions
Laplacian: Define A = + i;;
Harmonic function: Let u 1 0 — R be a twice differentiable function. We say
that » is a harmonic function if Au =0

For any holomorphic function f, R(f),¥(f) are examples of harmonic
functions, but there are harmonic functions which are not holomorphic.
Boundary of a set: For a metric space X, Q € X,

the boundary of @ = 90 = @ N QC

Maximum principle for harmonic functions: Let u : & — R be a twice
differentiable harmonic function. Let & C 2 be a compact sub set of Q2. Then,
SUD,cp, u(2) = sup,coy u(2) and inf, cp u(z) = inf cop u(z)

Maximum principle for holomorphic functions: Let @ C C be open and
connected and let f : @ — C be a holomorphic function. Then, for compact
k C Q, wehave, sup, ;. | f(2)| = supgy | f(2)]

Harmonic conjugate: Let u : @ — R be a twice differentiable harmonic
function. We say that v : @ — R is a harmonic conjugate of w if f = u 4 évis
holomorphic.

¢ For a harmonic function from C to R there exists a uniquely determined
harmonic conjugate from C to R (up to constants).





image20.png
Riemann Sphere

Extended complex plane: C = C| J{co}

Consider 2, associate every point z = z + ¢y with a line L that connects to

the point P = (0,0,1). L = (1 — t)z 4+ tP, where t € R.

The point at which L for some z touches S2 is given as
2z 2y |22 —1

<\Z\2+1’ 22 +17 |22 +1

graphic projection of the complex plane unto $2. This sphere is known as the

Riemann sphere.

>, associate P with co. This gives a stereo-

Moébius transformations

A map S(z) =
ad —bc # 0.
Every mobius transformation is holomorphic at C \ {—d/c}, i.e. every point
other than is zero.

¢ The set of all mobius transformations is a group under transposition.

e S5 forms a bijection with C
Every mobius transformation can be written as composition of,

for a,b,c,d € C is called a M&bius transformation if

1. Translation: §(z) =z +b,be C
2. Dilation: §(z) = az,a #0,a = ¥

3. Inversion: §(z) =1/#

Curves in C
A continuous parametrized curve is a continuous map v : [a,b] — C for
a,beR.
f a = b the curve is trivial.
v(a) is initial point and (b) is terminal point.
v is said to be closed if y(a) = y(b)
v is said . doesn’t “cross” itself.
Acurve —yisareversal of yif v: | a, b — Cand if —v(¥) = v(-¢)
7 is said to be continuously differentiable if v/(¢o) (defined usually) ex-
ists and is continuous.
Reparametrization: We say a curve v : [as,bo] — C is a continuous
reparametrization of y; : [a1,b1] — C, if there exists a homeomorphism ¢ :
[21,b1] = [a2, bo] st.p(an) = a2, (b1) = bz and (¢ (t)) = N (V2 € [o1,b1]-
* Reparametrization is an equivalence relation.
Arc length: Arc length of curve y = |y| = sup 3.7 [v(ziy1 — v(zs))| for all
partitions of [a, b].
e A curve that has a finite arc length is called rectifiable.

b
bl = [ ol

First Fundamental Theorem of Calculus

Let f : @ — C be a continuous function. Let F' : Q@ — C be called the anti-
derivative of f,i.e. F is holomorphic in @ and F'(z) = f(z),Vz € Q. Fora
rectifiable curve v, f,y f(2)dz = F(z1) — F (%), where z is the initial point and
21 is the terminal point.

Second Fundamental Theorem of Calculus

Let f : Q@ — C be a continuous function such that [ f = 0. Whenever v is a
closed polygonal path contained in €. For fixed 2y € £, define a path ; from
70 to 21 such that F'(z1) = f'n f(2) dz. Then F is a well defined holomorphic
function s.t. F'(z1) = f(21) V21 € Q

Properties of complex integration
For continuously differentiable curves v : [a,b] — C,and ¢ : [b,¢] = C
e For a reparametrization 5 of y we can say that f,y fz)dz = f,AY fz)dz
I £ de = — [ f()ds
frio F@dz = [ f(2)ds + [, f(z) dz
b
[ F@dz = [ F@0)y' (@) dt
If f is bounded by M then [, f(2)dz < M|y
Force C, wehave, [ (cf +g)(2)dz =c [, f(z)dz+ [ g(2) dz

HOI]lOtOpy of curves

Consider two curves g, y1 — £ with the same initial and end point [a, b].
We say that g is homotopic to vy (yg ~ 1) if there exists a continuous map
H:[0,1] X [a,b] = Qst. HO,8) = v(¢) and H(1,¢) = y1(t), V¢ € [a,b].
H(s,a) = 20, H(s,b) = 21 Vs € [0,1]
For closed curves vy at zp and v at 21, we say that 4 is homotopic to 41
as closed curves if there exists a continuous map H : [0,1] X [a,b] — @, s.t.
H(0,t) =v(1),H(1,t) = n(t), Yt € [a,b]. And H(s,a) = H(s,b), Vs € [0,1].
¢ Homotopy is an equivalence relation.

Cauchy-Goursat Theorem

Cauchy-Goursat theorem: If a curve - is homotopic to a reparametrization
of 1 then, the integral of some function f : & — C is homotopy invariant, i.e.,

t=[ s
Yo T
Alternative statement: Let f : Q@ — C be holomorphic on 2, and o : [a,b] —

 is a rectifiable curve which is null-homotopic (i.e. homotopic to a constant

map). Then, / flz)dz=0
7o

Cauchy’s theorem for convex domains

Let @ € C be a convex and open set and f : @ — C be holomorphic on .
Then f has an anti derivative F on @, and if v is a closed rectifiable curve on
Q then f,y f=0.

Cauchy’s integral formula

Let f: © — C be holomorphic. Fix zp €  and let r > Obes.t. B(zp,7) C Q.
Suppose v is a closed curve in Q \ {2} s.t. v is homotopic to a reparametriza-
tion to 1 where 71 (¢) = 2o + re®t for ¢ € [0,2r]. Then,

z
RN CI
i ), 5 — 20
Complex analytic function

An alternative statement, we say f : @ — C is complex analytical if given
29 € 0,3 B(z,7) C s.t. the formal power series Y - a, (2 —2p)" converges
in B(zg,r) to f.

Let f : @ — C be holomorphic on Q. Suppose for zp € Q,B(z0,7) C Q,
then for every n € N, let a, = 5 5 % dz where y(t) = z + re' for
t € [0,27]. Then the power series Y, ; a, (2 — 20)" converges in B(z,7) to
f().

Corollary: If f : @ — Cis holomorphic then f’is also holomorphic. Therefore
f is infinitely differentiable.

Factor theorem for analytic function

For a analytic function f : @ — Cs.t. f(z0) = 0 at zp € £2, 3 a unique analytic
functiong: Q@ — Cs.t. f(2) = (z — 20)g(2)

Principle of analytical continuation

* Let Q be open and connected subset of C. and f, g : @ — C be analytic
functions on . Suppose f, g agree on a non-empty subset of 3, and this
subset has an accumulation point. Then f = gon Q.

* A consequence to this is that, non-trivial holomorphic functions have
isolated zeros.

Higher-order Cauchy integral formula

Let f : @ — C be analytic on Q and z € Q with B(z,7) € Q. Letybea
closed curve in 2\ {#} that is homotopic to a reparametrization of y; where
() = 20 + re' for t € [0, 2]. Then,

f(")(zo) " ori / (= fij;”+1

Cauchy estimates: If | f ()| < M Vz € ¥([0,27]) then, Vn € N, then we have

Liouville’s Theorem
Let f be a entire function which is bounded. Then f is a constant function.

Fundamental Theorem of Algebra

Let p(z) = ag+a12+- - -+anz"™ be anon constant polynomials.t. a; € C,a, # 0.
[hen 321, 29, ..., 20 8.1 p(2) = an(z — 21) ... (# — 2n).

orera’s Theorem

f @ — Cbe a continuous function such that, f,y flz)dz = 0,V closed
ygonal paths v € £. Then f is holomorphic on 2.

fr 1 @ — Cbea holomorphic on Q,¥n € N s.t. f, converges uniformly on
mpact sets to f. Then f is holomorphic.

Winding number

Let v : [a, b — C be a closed curve and let zp be a point not in the image of ~.
[hen the winding number of v around z is

W, (z0) = / dz

i Sy 5 — %0

¢ Winding number is invariant over homotopy.
e Let zy be a point not in the image of v then 3» > 0 s.t. for z €
B(z0,7), W, (20) = W, (2)

¢ The winding number is always an integer.

¢ The winding number is locally constant.
Generalized Cauchy Integral formula: Let f : @ — C be holomorphic on
and v : [a,b] — £ be a closed curve which is null homotopic. Then for z not
in the image of ~,

f2)

(=~ Zo)

flz0)Wy(20) = /





image21.png
Open Mapping Theorem
* f:Q — Cbe holomorphic on Q. Then G :  x & — C given by

w when z # w
Glerw) = { f(z) whenz=w
then G is continuous.
Let f : 8 — C be holomorphic on some open set. Suppose z; € {2 s.t.
f'(z0) # 0. Then J a neighbourhood U of z € £ s.t. f restricted to U is
injective. And V' = f(U) is an open set and the inverse g : V — U of f
is holomorphic.
Let f : @ — C be a non-constant holomorphic function on open, con-
nected set . Let 2 € Q and wo = f(z0). Then 3 a neighbourhood U of
2z and bijective holomorphic function ¢ on U s.t. f(2) = wop + (¢(2))™
for z € U and some integer m > 0. And ¢ maps U unto B(0, r) for some
r > 0.
Open Mapping Theorem: Let f : @ — C be a non-constant holomorphic
function on open connected set £, then f(£2) is an open set.

Schwarz reflection principle

Let Q be a open connected set which is symmetric w.r.t R. Then define the
following,

e Oy ={zcQ| %) >0}

e O ={zQ|() <0}

o I={2e0|S() =0}
Schwarz reflection principle: LetQ be defined as above. Then if f: Q4 [ JT —
C which is continuous on €4 [JI and holomorphic on Q4. Suppose for
f(z) € R, Vz € I then there exists g : & — C holomorphic on Q s.t.
g(z) = f(z) forz e QI

Singularity of a holomorphic function

Isolated singularity: If f is holomorphic on B(zo, R) \ {20} for some
R > 0then # is called an isolated singularity.

Removable singularity: Let z; be an isolated singularity of a holomor-
phic function f as defined above. It is called removable if there exists
holomorphic function g on B(zo, R) s.t. g(2) = f(z) on B(zo, R) \ {z0}.
Riemann removable singularity theorem: Let z; be an isolated singu-
larity of a function f, then z, is a removable singularity if and only if f
is locally bounded around 2.

Pole: If zq is an isolated singularity as defined above and if ZILHQO [f(5)] =

oo then z is called a pole of f.
Essential singularity: A singularity that is neither removable nor a pole.

Doubly infinite series

Let 2, be a function defined for n =,0,£1,4£2, - - -, then it is doubly infinite.
¢ Adoubly infinite series converges if > > ; a, and > o ; a—, both con-
verge.
e Splitting up the series in similar manners you can define absolute and
uniform convergence.

An annulus A(zp, Ry, R) around a point zp for 0 < Ry < Ry is the set of all
z€ Cst By <|z— %] < Ra.

Laurent series expansion

Let f be a function holomorphic on A(zy, R1, Rz), then there exists a,, € C for
neZst

o

@ =" anle—z)"
where the doubly infinite series converges absolutely and uniformly in some
A(zg, 71,72) when Ry < r1 < rg < Ra.

_ 1 f»)

o= omi o (7 — z)"tL o

where y(z) = 2o + re® for t € [0,27] and Ry < r < Ra.
Important results
¢ fhasaremovable singularity at 2y <= a, = 0forn < Oin the Laurent
series expansion of f
e fhasa pole at zy of order m <= a, = 0forn < —m in the Laurent
series expansion of f.
e f has a essential singularity at 2y <= a, # O for infinitely many
negative integers n.

Casorati-Weierstrass theorem

Let 25 be an essential singularity of f then given o € C, there exists a
sequence z, € B(z, R) \ {20} 8.t. zn = 20 and f(z,) — a.

e Alternatively, f approaches any given value arbitrarily closely in any
neighborhood of an essential singularity.

Meromorphic functions

Let Q be a open connected subset of C andlet S € Q. Let f : Q\ § — Cbe
holomorphic on 2. We say that f is a meromorphic function on £ if,

e §is adiscrete set.

e [ either has removable singularities or poles at point of 5.

Operations on meromorphic functions

Let M(Q) denote the equivalence classes of meromorphic functions over Q.
¢ We say that two meromorphic functions f : Q\ Sy and g : @\ S5 are
equivalent if f(z) = g(z) on @\ (S1J S2).

e For f,g € M(Q), define f + g to be the equivalence class of (f + g) :

Q\ (51U S2)
e Similarly, fg is the equivalence class of fg: Q\ (511 S2).
The space of all meromorphic functions is a field.

Order of meromorphic functions
The order of a meromorphic function is defined as follows,

e If 2y € 5 is a removable singularity then the order of f at zg is the order
of the zero at zy of f, Le., f(z) = (z — 29)™g(2) then m is the order.

If z5 € S is a pole and the pole is of order 1 then order of f at 2 is —m.

If f = 0then Ord,, = .
Ordy, (f + 9) = min(Ord, (f), Ord, (9))
Ordy, (£g) = Ord,,(f) + Ord,, ()

Residue of a function

Residue of a function: Let f : @\ § — C be a holomorphic function, where
Q is an open set and S is a discrete subset of 2. Then for zp € S, let » > 0
bes.t. B(zo,7) C Qand B(zo,7) = {z0}. Thenin B(zo,7) \ {0}, consider the
Laurent series expansion of f givenby f(2) = > oo _ . an(z —20)™. We define
the residue of f at zo to be Res(f, z0) = a_1.

1. If # is a removable singularity then Res(z) = 0.

2. If g is a pole of order m then (2 — 20)™ f(2) = g(z), where g(z) # 0 on
B(z0,7)\ {z0}then, Res(z0) = a1 = L),

Residue theorem
Let ©2 be an open connected subset of C and S be a finite subset of 2 and let
f: 0\ § — C be a holomorphic function. Let v be a null homotopic closed
curve on 2. Then,

k
7 / $@)de = 3 W zpRes(s 2)

where § = {2, -+ , 2} and W., is the winding number.

Log derivative

For a holomorphic function f : @ — C. Define the log derivative of f to be

. )
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. When f has a pole of order m at z; then for f(z) = 92 the log

(z=z0)™
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Argument principle

Let f : Q\ S — Cbea meromorphic function s.t. f has zeros of orderdy, ..., dn
at z1,... 2, after removing the removable singularities. And f has poles of
order ey,..., ey, at points wy, ..., wey,. Let v be a closed curve which is null
homotopic in 2 s.t. the zeros and poles don't lie in the image of . Then,

m

L F') z = S i Zi) — e; wj
[5G = L) = X et
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Rouche’s theorem

Let v be a closed curve which is null homotopic in Q2. Let f, g be functions
holomorphicinQ and |g(2)| < |f(2)| ony then f and f+g have the same num-
ber of zeros counting multiplicities on the interior of H([0,1] x [a,b]) where
H is the null homotopy from + to a constant path.

Branch of the complex logarithm

LetQ be an open connected subset of C\ {0}. Define a branch of the logarithm
onQasa function f: @ — Cs.t. exp(f(2)) = #,Vz € Q.
For @ = C\ {R(z) < 0} define the standard branch to be

Log(z) = In|z| + iArg(z)

As defined above Log(z) is holomorphic on €.
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Schwarz lemma

Let I denote the open unit disc. Let f : I — I be a holomoprhic function s.t.

F£(0) = 0. Then,
|£(2)] < 2],z € D, and |f/(z)] <1

Also, if | f(z)| = |2| for some z € D or if | f/(0)] = 1 then IA € C,|A| = 1 st

fz) =Xz

Automorphism

A function f : @ — @ is an automorphism if f is holomorphic and has a
holomorphic inverse.

Automorphisms of the unit disc

Define a function ¢ : D — C defined as ¢a(2) = £52

1-a@z"

Let f : D — D be an automorphism. Then there exists o € Dand A € D s.t.
F(2) = Apal2)

Phragmén-Lindel6f method

LetQ={zcQ:a<R(z) <b}.Let f: @ — C, st f is continuous on {¥ and
holomorphic on €. Suppose for some z = z + iy, we have | f(z)| < B and let
M(z) = sup{|f(z + @y)| : —00 < y < oo}. Then,

M(I)b—a < M(a)b—zM(b)z—a

And further

17(2)] < M(z) < max{M(a), M)} = sup 1£2)l

hwarz-Pick theorem

z—w

First define p(z,w) = 1771‘ for z,w € D. Let f : I — D be holomorphic.
Then,
PUF(2), F(w)) < pleyw) Ve,w e D
and,
| ()|

— < ———VzeD

L=[f&F ~1-|s
Lifting of maps

Let X,Y,Z be open subsets of Cand let f : ¥ — Xandg: Z — X be
continuous maps. Then wesay,amapg: Z — Yisaliftof gw.rt. fif fog=g.

Uniqueness of lifts: Let X,Y,Z be open connected subsets of C and let
f Y — X be a local homeomorphism. Let g : Z — X be a continuous
map. Let g1 and ¢ be lifts of g wirt. f and suppose they are equal at some
pointin Z. Then g1 = g2.

e Let f:Y — X beaholomorphicmaps.t. f/(y) #0onY.Letg: Z — X

be a holomorphic map s.t. g : Z — Y is a lift of g wirt. f. Then g is
holomorphic.
Let X,Y be open subsets of C let, f : ¥ — X be a local homeomor-
phism. Let 45,91 be curves in X from z; to z; which are homotopic.
Suppose that for every s € [0,1], we can lift v,(t) = H(s,?) to a path
Fs ¢ [a,b) = Y wirt. f st 55(a) = 71, Vs € [0,1]. Then 7,1 are homo-
opicinY.

Covering spaces
Let X,Y be open subsets of C. We say that a continuous map f: ¥ — X
is a covering map if given z € X there exists a neighbourhood U of X and
open sets {Votaca inY st f71(U) = [[,e4 Vo (disjoint union of V) and
flv. : Vo = U is a homeomorphism. Then Y is called a cover of X.

e Let f: Y — X bea covering map and v[a,b] — X be a curve from
7o to x1 in X. Suppose yo € f~1({zo}). Then there exists a unique lift
Fla,b] = Y of yw.rt. fs.t. F(a) = yo.
For connected X let f: Y — X be a covering map. Suppose zg,z1 € X.
Then the cardinality of f~1(z¢) is the same as the cardinality of f~1(z).
For open subsets X, Y of Clet, f : Y — X be a covering map from Y to
X. Let Z be an open connected subset of C, which is simply connected
and locally connected. Suppose g : Z — X is a continuous map. Then
given zp € C and yo € Y s.t. g(z0) = f(20), then there exists a unique
iftg: Z = Yofgwrt f.
Let ©2 be a simply connected, locally connected, open connected subset
of C and g : @ — C* be a holomorphic map. Then there exists a lift
g: 0= Cstexp(g) =g

Bloch’s theorem
e Forf:D — Cst f(0) =0,f(0) =1and |f(z)] < M Vz € D. Then
B(0, 537) € (D).
e Let f: B(0,R) — C be holomorphic s.t. f(0) = 0, f/(0) = p for some
p>0and f|(2)| < M Vz € B(0, R). Then, B(0, %)  f(B(0, R)).
Bloch’s theorem: Let Q be an open connected subset of C s.t. D < Q.
Letf:Q — Cs.t. f(0) =0, f/(0) = 1. Then there exists a ball B/ contained in
D's.t. f|p is injective and B(0, %) C f(B) C f(D).

Little Picard’s theorem
* Let Q2 be an open connected subset of C which is simply connected. Let
f 1@ — C which omits 0 and 1. Then there exists a holomorphic func-
tiong : ! — Cs.t. f(2) = — exp(micosh(2g(2)))
¢ The function g as defined above doesn’t contain any disk of radius 1.
Little Picard’s theorem: If f is an entire function which omits two points, then
f is a constant function.
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