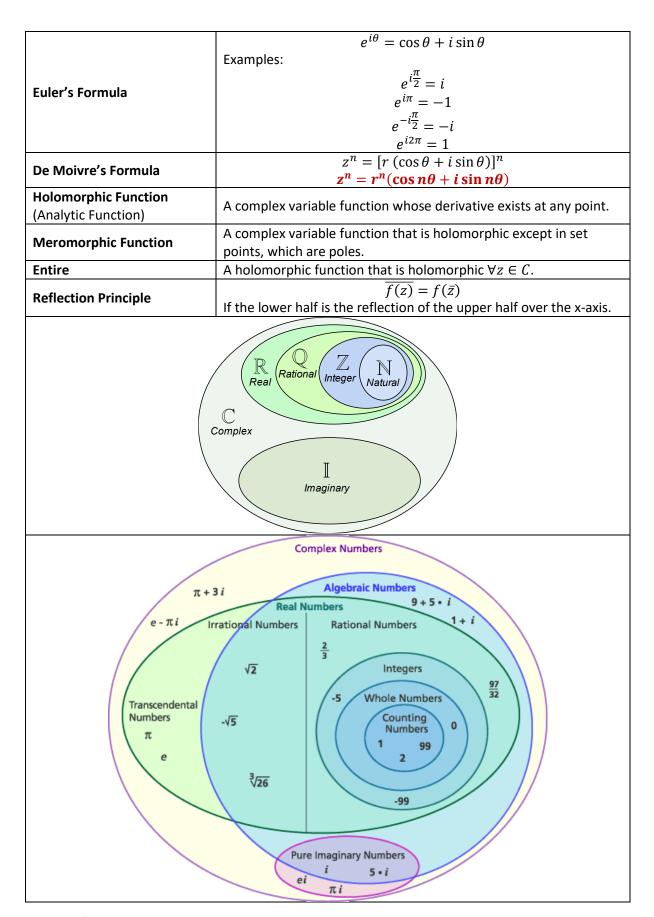
Harold's Complex Variables Cheat Sheet

25 February 2025

Definitions

Name	Definition or Formula	
Imaginary Number	$i=\sqrt{-1}$ $i^2=-1$ $i^3=-i$ $i^4=1$ i is used by mathematicians. j is used by electrical engineers.	
Complex Number	Rectangular Form (x,y) : $z = x + iy$ $z = (x,y) \text{ where } x = \text{Re } z; \ y = \text{Im } z$ Polar Form (r,θ) : $z = r(\cos\theta + i\sin\theta)$ Exponential Form (e^x) : $z = re^{i\theta}$ Parametric Form (ρ,θ) : $z = z_0 + \rho e^{i\theta}$ $(0 \le \theta \le 2\pi)$ Shorthand: $e^z = \exp(z) = e^x e^{iy}$	
Complex Conjugate	$e^{z} = \exp(z) = e^{x}e^{iy}$ $\bar{z} = x - iy$ $\bar{z} = r(\cos\theta - i\sin\theta)$ $\bar{z} = re^{-i\theta}$	
Modulus (Magnitude/Absolute Value)	$ z = \sqrt{x^2 + y^2}$ $ z = r$ $ z ^2 = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2 = z \cdot \bar{z}$ $\theta = \tan^{-1} \left(\frac{y}{r}\right)$	
Argument (Angle)	$\theta = \tan^{-1}\left(\frac{y}{\chi}\right)$ If $(-\pi < \theta \le \pi)$ then principle value	



Copyright © 2024-2025 by Harold Toomey, WyzAnt Tutor

Algebraic Properties

Property	Formula	
Complex Numbers	$z_{1} + z_{2} = (x_{1} + x_{2}) + i(y_{1} + y_{2})$ $z_{1} - z_{2} = (x_{1} + x_{2}) - i(y_{1} + y_{2})$ $z_{1}z_{2} = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{1}y_{2} + x_{2}y_{1})$ $\frac{z_{1}}{z_{2}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + i\frac{y_{1}x_{2} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}, z_{2} \neq 0$	
	$ z_1 \cdot z_2 \cdot z_3 \cdot \dots \cdot z_n = z_1 \cdot z_2 \cdot z_3 \cdot \dots \cdot z_n $ $\left \frac{z_1}{z_2} \right = \frac{ z_1 }{ z_2 }$ $-z = (-x, -y)$	
Additive Inverses	$-z = (-x, -y)$ $-z = re^{i(\theta + \pi)}$	
Multiplicative Inverses	$-z = re^{i(\theta + \pi)}$ $z^{-1} = \left(\frac{x}{x^2 + y^2}, i\frac{-y}{x^2 + y^2}\right), z \neq 0$ $z^{-1} = \frac{1}{r}e^{-i\theta}$ $ \bar{z} = z $	
Complex Conjugates	$ \bar{z} = z $ $\overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}$ $\overline{z_1 - z_2} = \bar{z_1} - \bar{z_2}$ $\overline{z_1 z_2} = \bar{z_1} \bar{z_2}$ $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z_1}}{\bar{z_2}}, z_2 \neq 0$	
Triangle Inequality	$ z_{1} \pm z_{2} \le z_{1} + z_{2} $ $ z_{1} \pm z_{2} \ge z_{1} - z_{2} $ $ z_{1} + z_{2} \ge z_{1} - z_{2} $ $z^{n} = r^{n}e^{in\theta}$	
Exponentials	$z^{n} = r^{n}e^{in\theta}$ $z^{c} = e^{c \log z} = \exp(c \log z)$	
Roots	$\sqrt[n]{z} = \sqrt[n]{r} \exp\left[i\left(\frac{\theta}{n} + \frac{2\pi k}{n}\right)\right]$	
Arguments (Angles)	$arg(z_1 z_2) = arg(z_1) + arg(z_2)$ $arg(z_1 z_2) = (\theta_1 + \theta_2) + 2n\pi$ $arg\left(\frac{z_1}{z_2}\right) = arg(z_1) - arg(z_2)$ $arg(z_2^{-1}) = -arg(z_2)$	

Transcendental Properties

Property	Formula
	$z_1 z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$
Power	$\frac{z_1}{z_2} = \left(\frac{r_1}{r_2}\right) e^{i(\theta_1 - \theta_2)}$
	$z_2 (r_2)$ $e^z = e^{z+2\pi ki}$
	$e = e$ $\log z = \ln z + i \arg z$
	$\log z = \ln z + t \log z$ $\log e^z = z + 2n\pi i$
Logovithme	$\log(z_1 z_2) = \log(z_1) + \log(z_2)$
Logarithms	$\ln z_1 z_2 = \ln z_1 + \ln z_2 $
	$\ln z_1 z_2 + i \arg(z_1 z_2)$
	$= (\ln z_1 + i \arg(z_1)) + (\ln z_2 + i \arg(z_2))$
	$= \left(\ln z_1 + i\arg(z_1)\right) + \left(\ln z_2 + i\arg(z_2)\right)$ $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$
	2i
	$\cos z = \frac{e^{iz} + e^{-iz}}{2i}$
	Z.i
	$\sin^2 z + \cos^2 z = 1$
Trigonometric	$\tan^2 z + 1 = \sec^2 z$
	$1 + \cot^2 z = \csc^2 z$
	$\sin(2z) = 2\sin z\cos z$
	SIII(ZZ) = Z SIII Z COS Z
	$\cos(2z) = \cos^2 z - \sin^2 z$
	$\cos(2z) = 2\cos^2 z - 1$
	$\cos(2z) = 1 - 2\sin^2 z$
	$\cos(2z) = 1 - 2\sin^2 z$ $\sinh z = \frac{e^z - e^{-z}}{2}$ $\cosh z = \frac{e^z + e^{-z}}{2}$
	$\frac{2}{e^z + e^{-z}}$
	$ \cosh z = \frac{c + c}{2} $
	$\sin(ix) = i \sinh x$
Hyperbolic	$\cos(ix) = \cosh x$
	$\sin z = \sin x \cosh y + i \cos x \sinh y$
	$\cos z = \cos x \cosh y - i \sin x \sinh y$
	0002 00011 0011111111111111111111111111
	$\sinh z = \sinh x \cos y + i \cosh x \sin y$
	$\cosh z = \cosh x \cos y - i \sinh x \sin y$

	$\sin^{-1} z = -i \ln \left[iz + \sqrt{1 - z^2} \right]$ $\cos^{-1} z = -i \ln \left[z + \sqrt{z^2 - 1} \right]$ $\tan^{-1} z = \frac{i}{2} \ln \left[\frac{i + z}{i - z} \right]$
Inverse Trigonometric	$\frac{d}{dz}\sin^{-1}z = \frac{1}{\sqrt{1-z^2}}$ $\frac{d}{dz}\cos^{-1}z = \frac{-1}{\sqrt{1-z^2}}$ $\frac{d}{dz}\tan^{-1}z = \frac{1}{1+z^2}$
Inverse Hyperbolic	$\sinh^{-1} z = \ln\left[z + \sqrt{1 + z^2}\right]$ $\cosh^{-1} z = \ln\left[z + \sqrt{z^2 - 1}\right]$ $\tanh^{-1} z = \frac{1}{2} \ln\left[\frac{1 + z}{1 - z}\right]$

Functions

Name	Formula
Functions	f(z) = f(x+iy) = u(x,y) + iv(x,y) = u+iv $f(z) = f(re^{i\theta}) = u(r,\theta) + iv(r,\theta) = u+iv$
	Hyperbola (Rectangular Form):
	$w = z^2$
	$u = x^{2} + y^{2} = c_{1}$ $v = 2xy = -2y\sqrt{y^{2} + c_{1}}$
	$v = 2xy = 2yyy + c_1$
	$\begin{vmatrix} y \\ 1 \end{vmatrix}$
	O
Conic Mappings	!
	Circle (Polar Form):
	$w = z^2$ $w = r^2 e^{i2\theta}$ $\rho = r^2$
	$\rho = r^2$
	$\varphi=2\theta$
	y
	O r_0 x O r_0^2 u

Differentiation

Name	Formula
	Determines whether the given complex-valued function $f(z) = u + iv$ is analytic and differentiable.
	Rectangular Form:
	f(z) = u(x, y) + iv(x, y)
Cauchy-Riemann Equations	and $f'(z)$ exists at point $z_0 = x_0 + iy_0$
	$u_x = v_y$, $u_y = -v_x$
cauchy memani Equations	$f'(z_0) = u_x + iv_x$
	where $u_x = \frac{\partial u}{\partial x}$
	where $u_x - \frac{\partial}{\partial x}$
	Polar Form:
	$f(z) = u(r,\theta) + iv(r,\theta)$
	$ru_r = v_\theta$, $u_\theta = -rv_r$
	$f'(z_0) = e^{-i\theta}(u_r + iv_r)$
Laplace's Equation	$H_{xx}(x,y) + H_{yy}(x,y) = 0$
(Harmonic)	$\Pi_{\chi\chi}(\lambda,y) + \Pi_{\chi\chi}(\lambda,y) = 0$

Contours

Name	D	efinition
Simple Arc (C)		t is, C is simple if $z(t_1) \neq z(t_2)$ when
(Jordan arc)	$t_1 \neq t_2$. E.g., open.	
Contour (C)	A closed path in the complex plant A piecewise smooth arc consisting joined end to end.	ane. ng of a finite number of smooth arcs
	A simple arc where $z(b) = z(a)$. E.g., closed.	Simple closed curve
Simple Curve (C)	Simple closed curve C defaults to a circle, $ z-0 =r$, centered at 0 with radius r and interval $[0,2\pi]$, oriented counterclockwise. $\mathcal{C}(r)=\{z\in\mathbb{C}: z =r\}$	
Positively Oriented	a simple closed curve, or a Jorda in the counterclockwise direction	on curve, is positively oriented when it is
Simply Connected Domain	D is a domain such that every si only points of D.	mple closed contour within it encloses
Branch Cut	A portion of a line or curve that branch F of a multiple-valued fu	
Regions Bound by Curve C	D _{int} : Bounded	D _{out} : Unbounded
Closed, Simple, Counter-Clockwise Oriented Curve	One Point, Simple Pole:	Multiple Points, Simple Poles:

Integration

Name	Formula	
Complex Integration	$\int_C f(z) dz = \int_C (u + iv)(dx + idy) = \int_C udx - vdy + i \int_C vdx - udy$	
	"No corresponding helpful interpretation, geometric or physical, is available for integrals in the complex plane." (Brown & Churchill, p.125)	
Contour Integral (Complex ©)	Called a Line Integral if Real \mathbb{R} numbers. $\int_{C} f(z) dz = \int_{a}^{b} f[z(t)] z'(t) dt$ Change of Contour direction: $\int_{-C} f(z) dz = -\int_{C} f(z) dz$	
Fundamental Theorem of Calculus with Contour Integral	$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt = F(z(t)) \Big]_{a}^{b}$ $= F(z(b)) - F(z(a)) = F(z_{2}) - F(z_{1})$ Since $z(b) = z_{2}$ and $z(a) = z_{1}$. where z_{0} is a point within the contour C .	
Morera's Theorem	If $\int_C f(z) dz = 0$ then, f is Holomorphic over \mathbb{R} .	
Cyclic Integral	Integral over a closed contour meaning the curve returns to its initial position $(a = b)$. For circular contours, $\oint_{C_R} f(z) dz = \int_0^{2\pi} f(z) dz$ For non-circular contours, $\oint_C f(z) dz = \int_{C_R} f(z) dz + \int_{L_1} f(z) dz + \int_{L_2} f(z) dz$ Parameterize the arcs and identify the bounds of integration. $L_1: z = re^{i0}, \qquad 0 \le r \le R$ $L_2: z = re^{i2\pi/3}, R \le r \le 0$	

	D_{int} : If C is closed, i.e., $z_0 = z_1$, then
	$\oint_C f(z) dz = 0$
Cauchy-Goursat Theorem (Cauchy's Integral Theorem)	D_{out} : Outside of closed C, at infinity (∞): If $\lim_{z \to \infty} f(z) \ z = 0$ Then $\oint_C f(z) \ dz = 0$
	Turns a contour integral into a derivative.
Cauchy Integral Formula	Simple: $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-z_0} dz$ General:
	$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{(z - z_0)^{n+1}} dz$ where $n = 0, 1, 2,; 0! = 1; f^{(0)}(z_0) = f(z_0).$
	Estimation Lemma:
	$\left \int_{C} f(z) dz \right \le \operatorname{length}(C) \cdot \max_{z \in C} f(z) $
	Common Application:
Jordan's Lemma	$\lim_{z\to\infty}f(z)z=0$
	Then $\int_{-\infty}^{\infty} f(at+b) a dt x = \int_{L} f(z) dz = \lim_{R \to \infty} \oint_{C_{R}} f(z) dz$
	where line $L=\{at+b\}, -\infty < t < \infty$ and $R=$ semi-circle radius along this line.

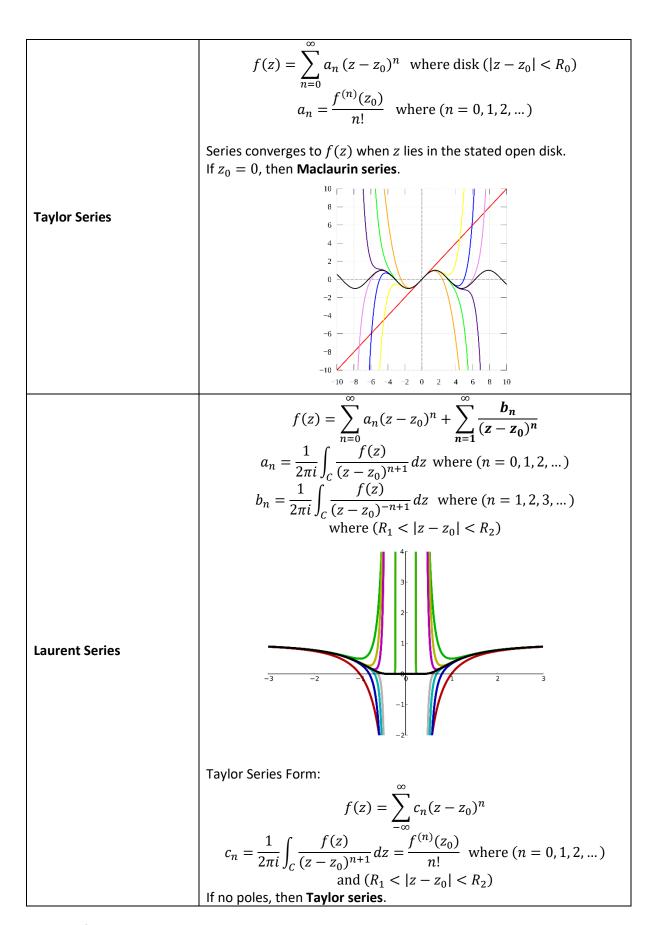
Poles and Residues

Name	Formula	
Poles	Roots in the denominator of a complex function that is holomorphic (complex differential). E.g., Singularity, vertical asymptote.	
	Poles are zeros in the denominator of $f(z)$. $f(z) = \frac{\varphi(z)}{(z-z_0)^m}$ Simple Pole: $z_0 \text{ is a pole of order } 1 \ (m=1).$	
	High-Order Pole: $z_0 \text{ is a pole of order } m \ (m=2,3,4,\dots).$ Theorem: If z_0 is a pole of function f , then $\lim_{z \to z_0} f(z) = \infty.$	
Residue	$\operatorname{Res}_{z_1}(f) = \lim_{z \to z_1} (z - z_1) f(z)$ $\operatorname{Observation:} \text{ Since } z_1 \text{ is a simple pole, then the } \operatorname{Res}_{z_1}(f) \text{ turns the } f \text{ unction } f \text{ into a function with a hole or hollow point.} \text{ The limit makes } the remaining function appear continuous. "Remove the pole and cover the hole."}$ $\operatorname{Tip:} \text{ If Laurent Series centered at 0, then } \operatorname{Res}_{z_1}(f) = a \text{ the } z^{-1} \text{ term of } f(z) = \cdots + az^{-1} + \cdots.$	
Cauchy's Residue Theorem (Simple Poles)	One Point, Simple Pole inside Contour C: If exists $\operatorname{Res}_{z_1}(f) = \lim_{z \to z_1} (z - z_1) f(z)$ Then $\oint_{\mathcal{C}} f(z) dz = 2\pi i \operatorname{Res}_{z_1} f(z)$	

	<u>Multiple</u> Points, Simple Poles inside Contour C: If these exist	
	$\sum_{i=1}^{n}$	
	$\sum_{k=1}^{\infty} \operatorname{Res}_{z=z_{k}} f(z) =$	
	$Res_{z_1}(f) = \lim_{z \to z_1} (z - z_1) f(z)$	
	++	
	$Res_{z_n}(f) = \lim_{z \to z_n} (z - z_n) f(z)$	
	it .	
	Then	
	$\int_{\Gamma} f(z) dz = 2 - i \sum_{n=1}^{\infty} p_{n-1} f(z)$	
	$ \oint_C f(z) dz = 2\pi i \sum_{z=z_k} \operatorname{Res}_{z=z_k} f(z) $	
	k=1	
	Special Case:	
	If $f(z)$ is even, then	
	$\int_{-\infty}^{\infty} f(z) dz = \frac{1}{2} \int_{0}^{\infty} f(z) dz$	
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (z) dz = 2 \int_{0}^{\infty} \int_{0}^{\infty} (z) dz$	
	General:	
	Works with higher-order poles.	
	If $f(z) = \frac{\varphi(z)}{(z - z_0)^m}$ $(m = 1, 2, 3,)$	
	where $\varphi(z)$ is analytic and nonzero at z_0 , then	
	$\operatorname{Res}_{z=z_0} f(z) = \frac{\varphi^{(m-1)}(z_0)}{(m-1)!} (m=1,2,)$	
Residue of High-Order	Simple:	
Poles	$\operatorname{Res}_{z=z_0} f(z) = \varphi(z_0) \text{ when } m=1$	
	$z=z_0$	
	since $\varphi^{(0)}(z_0)=\varphi(z_0)$ and $0!=1$.	
	Tip:	
	If $f(z) = \frac{g(z)}{(z - z_0)^m (z - z_1)^p \cdots (z - z_{n-1})^q}$	
	then choose $\varphi(z) = \frac{g(z)}{(z-z_1)^p \cdots (z-z_{n-1})^q}$.	
	Theorem : Let two functions p and q be analytic at a point z_0 . If	
	$p(z_0) \neq 0,$	
Residue of Simple Poles	$q(z_0) = 0, \text{ and}$	
(shortcut)	$q'(z_0) \neq 0$, then z is a simple rate of the questions $q(z)/q(z)$ and	
,	then z_0 is a simple pole of the quotient $p(z)/q(z)$ and	
	$\operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}.$	
	Theorem: Suppose that:	
Zeros and Poles	(a) two functions p and q are analytic at a point z_0 ;	
	(b) $p(z_0) \neq 0$ and q has a zero of order m at z_0 .	
	Then the quotient $p(z)/q(z)$ has a pole of order m at z_0 .	

Series

Name	Formula
	If a function f is entire and bounded in the complex plane, then $f(z)$
Liouville's Theorem	is constant throughout the plane.
Fundamental Theorem of Algebra	$P(z) = a_n z^n + \dots + a_2 z^2 + a_1 z + a_0, \qquad (a_n \neq 0, n \geq 1)$ $P(z) = c(z - z_n) \dots (z - z_2)(z - z_1)$ Any polynomial of degree n has at least one zero in the <u>complex plane</u> . That is, there exists at least one point z_0 such that $P(z_0) = 0$.
Maximum Modulus Principle	Theorem: If a function f is analytic and not constant in a given domain D , then the modulus $ f(z) $ has no maximum value in D . That is, there is no point z_0 in the domain such that $ f(z) \leq f(z_0) $ for all points z in it. Corollary: Suppose that a function f is continuous on a closed bounded region R and that it is analytic and not constant in the interior of R . Then the maximum value of $ f(z) $ in R , which is always reached, occurs somewhere on the boundary of R and never in the interior.
	$\lim_{n \to \infty} z_n = z$
Complex Variable	$\lim_{n \to \infty} z_n = z$ iff $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$
Convergence	
Complex Series Convergence	$\sum_{n=1}^{\infty} z_n = S$ iff $\sum_{n=1}^{\infty} x_n = X \text{ and } \sum_{n=1}^{\infty} y_n = Y$ where $S = X + iY$
Series Convergence	Corollary 1: If a series of complex numbers converges, the n th term converges to zero as n tends to infinity. Corollary 2: The absolute convergence of a series of complex numbers implies the convergence of that series.
Annular Domain $R_1 < z-z_0 < R_2$	R_1 R_2 C C C C
Transcendental Series	See <u>Harold's Taylor Series Cheat Sheet</u> for a comprehensive list of the Maclaurin series of all transcendental functions.



Power Series

Name	Formula
Power Series	$S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ where $(z - z_0 < R)$
Absolute and Uniform Convergence	Theorem 1 : If a power series converges when $z=z_1\ (z_1\neq z_0),$ then it is absolutely convergent at each point z in the open disk $ z-z_0 < R_1 \text{where } R_1= z_1-z_0 .$ Theorem 2 : If z_1 is a point inside the circle of convergence $ z-z_0 =R$ of a power series then that series must be uniformly convergent in the closed disk $ z-z_0 \leq R_1 \text{where } R_1= z_1-z_0 .$
Continuity of Sums	Theorem : A power series represents a continuous function $S(z)$ at each point inside its circle of convergence $ z - z_0 = R$.
Integration	Theorem : Let C denote any contour interior to the circle of convergence of the power series and let $g(z)$ be any function that is continuous on C . The series formed by multiplying each term of the power series by $g(z)$ can be integrated term by term over C ; that is, $\int_C g(z) S(z) dz = \sum_{n=0}^\infty a_n \int_C g(z) (z-z_0)^n dz .$
Differentiation	Theorem : The power series can be differentiated term by term. That is, at each point z interior to the circle of convergence of that series, $S'(z) = \sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}.$
Leibniz's Rule for the n th Derivative	$[f(z) g(z)]^{(n)} = \sum_{n=0}^{\infty} \binom{n}{k} f^{(k)}(z) g^{(n-k)}(z)$ where $(n = 1, 2,)$ $\binom{n}{k} = \frac{n!}{k! (n-k)!} \text{ where } (k = 0, 1, 2,, n)$
Uniqueness Representations	Theorem 1 : If a power series converges to $f(z)$ at all points interior to some circle $ z-z_0 =R$, then it is the Taylor series expansion for f in powers of $z-z_0$. Theorem 2 : If a series $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$ converges to $f(z)$ at all points in some annular domain about z_0 , then it is the Laurent series expansion for f in powers of $z-z_0$ for that domain.
Multiplication	Let $f(z)$, $g(z)$, $h(z)$, and $k(z)$ all be different power series.
Division	$f(z)g(z) = h(z)$ $\frac{f(z)}{g(z)} = k(z)$

College Course

- Course: NYU MATH-UY-4434: Applied Complex Variables, 2024.
- **Textbook**: Complex Variables and Applications, 9th Edition, Chapters 1-7, James Ward Brown & Ruel V. Churchill, McGraw-Hill Education, 2014.

References

• Bhoris Dhanjal, <u>Bhorice2099</u> on Reddit (2021, 11 October). Imgur, <u>Introductory Complex</u> Analysis Cheat Sheet v2.

Introductory Complex Analysis Cheat Sheet

Field of Complex Numbers

We construct the field of complex numbers as the following quotient ring, $\mathbb{C}=\mathbb{R}[x]/\langle x^2+1\rangle$

Algebra of Complex Numbers

- Addition: (a+ib) + (c+id) = (a+c) + i(b+d)
- Multiplication: (a+ib)(c+id) = (ac-bd) + i(ad+bc)
- Multiplication: $\frac{a+ib}{c+id} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$ Square root: $\sqrt{a+ib} = \pm \left(\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}} + i\frac{b}{|b|}\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}\right)$
- ℜ(a + ib) = a, ℑ(a + ib) =

Conjugation, Absolute Value

- Complex conjugation: $\overline{a+ib}=a-ib$
 - $\overline{a+b} = \overline{a} + \overline{b}$

Geometrically, conjugation is reflection over the real axis.

- Absolute value: $|a| = +\sqrt{a\overline{a}}$
 - $|ab| = |a| \cdot |b|$
 - $-|a+b|^2 = |a|^2 + |b|^2 + 2\Re(a\overline{b})$
 - $-|a-b|^2 = |a|^2 + |b|^2 2\Re(a\overline{b})$
 - $-|a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2)$

The absolute value function forms the metric on \mathbb{C} . \mathbb{C} is complete under

Basic Topological definitions in C

Some basic results:

- For $z_0 \in \mathbb{C}$, r > 0 we denote the ball (i.e. disk) of radius r around z_0 to be $B(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\}$
- A point $z \in \mathbb{C}$ is a limit point of $E \subseteq \mathbb{C}$ if $\forall \varepsilon > 0$, $B(z, \varepsilon) \cap E$ contains a point other than z.
- A subset $E \subseteq \mathbb{C}$ is said to be open if $\forall z \in E, \exists \ r > 0$, s.t. $B(z,r) \subset E$.
- A subset $E \subseteq \mathbb{C}$ is said to be closed, if $\mathbb{C} \setminus E$ is open in C. Or equivalently a set which contains all its limit points.

Some properties of open sets:

- C and Ø are open subsets of C.
- All finite intersections of open sets are open sets.
- The collection of all open sets on C form a topology on C.

Interior, closure, density

- **Interior:** Let $E \subseteq \mathbb{C}$. The interior of E is defined as, E° =set of all interior points of E, or equivalently, $\cup \{\Omega \mid \Omega \subseteq E \land \Omega \text{ is open in } \mathbb{C}\}$
- Closure: Let $E \subseteq \mathbb{C}$. The closure of E is defined as $\hat{f}F \mid E \subseteq$ $F \wedge F$ is closed in \mathbb{C}
- Density: Let $E \subseteq D$, the closure of E in D is D. Then E is called dense

Path: A path in a metric space from a point $x \in X$ to $y \in Y$ is a continuous mapping $\gamma : [0,1] \rightarrow X$ s.t. $\gamma(0) = x$ and $\gamma(1) = y$.

Separated and Connected

For a metric space (X, d).

- Separated: X is separated if ∃ disjoint non-empty open subsets A, B of X s.t. $X = A \cup B$.
- · Connected:
 - X is connected if it has no separation.
 - X is connected \iff X does not contain a proper subset of Xwhich is both open and closed in X.
 - Continuous functions preserve connectedness.
 - An open subset $\Omega \in \mathbb{C}$ is connected \iff for $z, w \in \Omega$, there exists a path from z to w.

Basic Topological definitions in C contd.

Open cover: Let (X, d) be a metric space and E be a collection of open sets in X. We say that \mathscr{U} is an open cover of a subset $K \subseteq X$, if $K \subset \bigcup \{\mathscr{U} \mid \mathscr{U} \in E\}$ **Compactness:** For some $K \subseteq X$ is compact if for every open cover E of K, there exists $E_1, \dots, E_n \in E$ s.t. $K \subset U_{i-1}^n E_n$, i.e. it is compact if it has a finite

- · In a metric space, a compact set is closed.
- A closed subset of a compact set is closed.

Limit point compact: We say a metric space *X* is limit point compact if every infinite subset of *X* has a limit point.

• If X is a compact metric space, then it is also limit point compact. **Sequentially compact:** We say a metric space X is sequentially compact if every sequence has a convergent sub-sequence.

- If \hat{X} is limit point compact then \hat{X} is sequentially compact.
- Let X be sequentially compact, then X is a compact metric space. **Lebesgue number lemma:** Let X be sequentially compact, and let $\mathscr U$ be an open cover of X. Then $\exists \delta > 0$ s.t. for $x \in X$, $\exists u \in \mathcal{U}$ s.t. $B(x, \delta) \subseteq u$.

Isometries on the Complex Plane

A function $f: \mathbb{C} \to \mathbb{C}$ is called an **isometry** if |f(z) - f(w)| = |z - w|, $\forall z, w \in \mathbb{C}$. • Let f be an isometry s.t. f(0) = 0, then the inner product $\langle f(z), f(w) \rangle =$

- $\langle z, w \rangle, \forall z, w \in \mathbb{C}.$
- If f is an isometry s.t. f(0) = 0 then f is a linear map.
- The standard argument for $a + ib \in \mathbb{C}$, $Arg(a + ib) = tan^{-1} \frac{b}{a}$

Functions on the Complex Plane

Uniform convergence: Let $\Omega \subseteq \mathbb{C}$ and $f_1, \dots, f_n : \Omega \to \mathbb{C}$ be a set of functions on Ω . We say, $\{f\}_{n\in\mathbb{N}}$ converges uniformly to f if given $\varepsilon>0$, $\exists n\in\mathbb{N}$ s.t. $|f_n(x) - f(x)| < \varepsilon, \forall x \in \Omega \text{ and } n \geq N.$

Complex exponential: For $z \in C$, $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Trigonometric functions: For $z \in \mathbb{C}$, $\cos(x) = \frac{e^{iz} + e^{-iz}}{2}$ and $\sin(x) = \frac{e^{iz} - e^{iz}}{2}$ Hyperbolic trigonometric functions: For $z \in \mathbb{C}$, $\cosh(x) = \frac{e^z + e^{-z}}{2}$ and

$\sinh(z) = \frac{e^z - e^{-z}}{2}$

Complex differentiability

Complex derivative: Let $\Omega \subseteq \mathbb{C}$ and $f : \Omega \to \mathbb{C}$, we say that f is complex differentiable at a point $z_0 \in \Omega$ if z_0 is an interior point and the following limit exists $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z}$. The limit is denoted as $f'(z_0)$ or $\frac{\mathrm{d}f(z)}{\mathrm{d}z}$

Holomorphic functions: If $f: \Omega \to \mathbb{C}$ is complex differentiable at every point $z \in \Omega$, then f is said to be a holomorphic on Ω . Entire function: Functions which are complex differentiable on $\hat{\mathbb{C}}$ are called entire functions.

- Complex differentiability implies continuity.
- Complex derivatives of a function are linear transformations.
- Product rule: If $f,g:\Omega\to\mathbb{C}$ are complex differentiable at $z_0\in\Omega$. Then fg is complex differentiable at z_0 with derivative $f'(z_0)g(z_0) +$
- Quotient rule: If $f, g: \Omega \to \mathbb{C}$ are complex differentiable at $z_0 \in \Omega$, and g doesn't vanish at z_0 . Then $\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{g(z_0)^2}$
- Chain rule: If $f:\Omega\to\mathbb{C}$ and $g:D\to\mathbb{C}$ are complex differentiable at $z_0 \in \Omega$, and $f(\Omega) \subseteq D$. Then $g(f(x))'(z_0) = g'(f(z_0))f'(z_0)$

Formal Power Series: A formal power series around $z_0 \in \mathbb{C}$ is a formal expansion $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, where $a_n \in \mathbb{C}$ and z is indeterminate.

Radius of convergence: For a formal power series $\sum a_n(z-z_0)^n$ the radius of convergence $R \in [0,\infty]$ given by $R = \liminf_{n \to \infty} |a_n|^{-1/n}$. Using the ratio test is identical i.e. $R = \liminf_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$.

- The series converges absolutely when $z \in B(z_0, R)$, and for r < R, the series converges uniformly, else if $|z - z_0| > R$ the series diverges.
- Let $z \in \mathbb{C}$ s.t. $|z-z_0| > R$, then \exists infinitely many $n \in N$ s.t. $|a_n|^{-1/n} <$

Abel's Theorem: Let $F(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series with a positive radius of convergence R, suppose $z_1=z_0+Re^{i\theta}$ be a point s.t. $F(z_1)$ converges. Then $\lim_{r\to R^-} F(z_0 + re^{i\theta}) = F(z_1)$

Differentiation of Power Series

Let $F(z) = \sum_{n=1}^{\infty} a_n (z-z_0)^n$ be a power series around z_0 with a radius of convergence R. Then F is **holomorphic** in $B(z_0,R)$.

- $F(x)' = \sum_{n=1}^{\infty} na_n(z-z_0)^{n-1}$ with same radius of convergence R. $a_n = \frac{F^*(z_0)}{n!}$

Cauchy product of two power series: For power series $F(z) = \sum a_n(z-z_0)^n$ and $G(z) = \sum a_n(z-z_0)^n$ with degree of convergence at least R. Then the Cauchy product $F(z)G(z) = \sum c_n(z-z_0)^n$ where $c_n = \sum_{k=0}^n a_k b_{n-k}$ also has degree of convergence at least R.

Cauchy-Riemann Differential Equations

For a complex function f(z) = u(z) + iv(z),

 $f'(x) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ or $f'(x) = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$ Therefore, we get the two Cauchy-Riemann Differential equations,

•
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 • $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

A function is holomorphic iff it satisfies the Cauchy-Riemann equations. Wirtinger derivatives:

•
$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$$
 • $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$

If f is holomorphic at z_0 then, $\frac{\partial f}{\partial z} = 0$ and $f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0)$

Harmonic Functions

Laplacian: Define $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$. Harmonic function: Let $u:\Omega\to\mathbb{R}$ be a twice differentiable function. We say that u is a harmonic function if $\Delta u = 0$

For any holomorphic function f, $\Re(f)$, $\Im(f)$ are examples of harmonic functions, but there are harmonic functions which are not holomorphic.

Boundary of a set: For a metric space X, $\Omega \in X$,

the boundary of $\Omega = \partial \Omega = \overline{\Omega} \cap \overline{\Omega^C}$

Maximum principle for harmonic functions: Let $u:\Omega\to\mathbb{R}$ be a twice differentiable harmonic function. Let $k \subset \Omega$ be a compact sub set of Ω . Then, $\sup_{z \in k} u(z) = \sup_{z \in \partial k} u(z)$ and $\inf_{z \in k} u(z) = \inf_{z \in \partial k} u(z)$

Maximum principle for holomorphic functions: Let $\Omega \subseteq \mathbb{C}$ be open and connected and let $f:\Omega\to\mathbb{C}$ be a holomorphic function. Then, for compact $k \subseteq \Omega$, we have, $\sup_{z \in k} |f(z)| = \sup_{\partial k} |f(z)|$

Harmonic conjugate: Let $u:\Omega\to\mathbb{R}$ be a twice differentiable harmonic function. We say that $v:\Omega\to\mathbb{R}$ is a harmonic conjugate of u if f=u+iv is

• For a harmonic function from C to R there exists a uniquely determined harmonic conjugate from \mathbb{C} to \mathbb{R} (up to constants).

Riemann Sphere

Extended complex plane: $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Consider S^2 , associate every point z=x+iy with a line L that connects to the point P=(0,0,1). L=(1-t)z+tP, where $t\in\mathbb{R}$.

The point at which L for some z touches S^2 is given as $\left(\frac{2x}{|z|^2+1},\frac{2y}{|z|^2+1},\frac{|z|^2-1}{|z|^2+1}\right)$, associate P with ∞ . This gives a stereo-

graphic projection of the complex plane unto S^2 . This sphere is known as the Riemann sphere.

Möbius transformations

A map $S(z)=\dfrac{az+b}{cz+d}$ for $a,b,c,d\in\mathbb{C}$ is called a Möbius transformation if $ad-bc\neq 0$.

Every mobius transformation is holomorphic at $\mathbb{C} \setminus \{-d/c\}$, i.e. every point other than is zero.

- The set of all mobius transformations is a group under transposition.
- S forms a bijection with C

Every mobius transformation can be written as composition of,

- 1. Translation: $S(z) = z + b, b \in \mathbb{C}$
- 2. Dilation: $S(z) = az, a \neq 0, a = e^{i\theta}$
- 3. Inversion: S(z) = 1/z

Curves in C

A continuous parametrized curve is a continuous map $\gamma:[a,b]\to\mathbb{C}$ for $a,b\in\mathbb{R}.$

- If a = b the curve is trivial.
- γ(a) is initial point and γ(b) is terminal point.
- γ is said to be closed if $\gamma(a) = \gamma(b)$.
- γ is said to be simple if it is injective, i.e. doesn't "cross" itself.
- A curve $-\gamma$ is a reversal of γ if $\gamma: [-a, -b] \to \mathbb{C}$ and if $-\gamma(t) = \gamma(-t)$
- γ is said to be continuously differentiable if $\gamma'(t_0)$ (defined usually) exists and is continuous.

Reparametrization: We say a curve $\gamma_2: [a_2,b_2] \to \mathbb{C}$ is a continuous reparametrization of $\gamma_1: [a_1,b_1] \to \mathbb{C}$, if there exists a homeomorphism $\varphi: [a_1,b_1] \to [a_2,b_2]$ s.t. $\varphi(a_1) = a_2, \varphi(b_1) = b_2$ and $\gamma_2(\varphi(t)) = \gamma_1(t) \forall t \in [a_1,b_1]$.

Reparametrization is an equivalence relation.

Arc length: Arc length of curve $\gamma = |\gamma| = \sup \sum_{i=0}^{n} |\gamma(x_{i+1} - \gamma(x_i))|$ for all partitions of [a, b].

- · A curve that has a finite arc length is called rectifiable.
- $|\gamma| = \int_a^b |\gamma'(t)| dt$

First Fundamental Theorem of Calculus

Let $f:\Omega\to\mathbb{C}$ be a continuous function. Let $F:\Omega\to\mathbb{C}$ be called the anti-derivative of f, i.e. F is holomorphic in Ω and $F'(z)=f(z), \forall z\in\Omega$. For a rectifiable curve $\gamma,\int_{\gamma}f(z)dz=F(z_1)-F(z_0)$, where z_0 is the initial point and z_1 is the terminal point.

Second Fundamental Theorem of Calculus

Let $f:\Omega\to\mathbb{C}$ be a continuous function such that $\int_{\gamma}f=0$. Whenever γ is a closed polygonal path contained in Ω . For fixed $z_0\in\Omega$, define a path γ_1 from z_0 to z_1 such that $F(z_1)=\int_{\gamma_1}f(z)\,dz$. Then F is a well defined holomorphic function s.t. $F'(z_1)=f(z_1)\ \forall z_1\in\Omega$

Properties of complex integration

For continuously differentiable curves $\gamma:[a,b]\to\mathbb{C}$, and $\sigma:[b,c]\to\mathbb{C}$

- For a reparametrization $\widehat{\gamma}$ of γ we can say that $\int_{\gamma} f(z) dz = \int_{\widehat{\gamma}} f(z) dz$
- $\int_{-\infty}^{\infty} f(z) dz = -\int_{\infty}^{\infty} f(z) dz$
- $\int_{\gamma+\sigma} f(z) dz = \int_{\gamma} f(z) dz + \int_{\sigma} f(z) dz$
- $\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$
- If f is bounded by M then $\int_{\mathbb{R}^n} f(z) dz \leq M|\gamma|$
- For $c \in \mathbb{C}$, we have, $\int_{\gamma} (cf+g)(z) dz = c \int_{\gamma} f(z) dz + \int_{\gamma} g(z) dz$

Homotopy of curves

Consider two curves $\gamma_0, \gamma_1 \to \Omega$ with the same initial and end point [a,b]. We say that γ_0 is homotopic to $\gamma_1 (\gamma_0 \sim \gamma_1)$ if there exists a continuous map $H: [0,1] \times [a,b] \to \Omega$ s.t. $H(0,t) = \gamma_0(t)$ and $H(1,t) = \gamma_1(t), \ \forall t \in [a,b]$. $H(s,a) = z_0, H(s,b) = z_1 \ \forall s \in [0,1]$

For **closed curves** γ_0 at z_0 and γ_1 at z_1 , we say that γ_0 is homotopic to γ_1 as closed curves if there exists a continuous map $H:[0,1]\times[a,b]\to\Omega$, s.t. $H(0,t)=\gamma_0(t), H(1,t)=\gamma_1(t), \ \forall t\in[a,b].$ And $H(s,a)=H(s,b), \ \forall s\in[0,1].$

· Homotopy is an equivalence relation.

Cauchy-Goursat Theorem

Cauchy-Goursat theorem: If a curve γ_0 is homotopic to a reparametrization of γ_1 then, the integral of some function $f:\Omega\to\mathbb{C}$ is homotopy invariant, i.e., $\int_{\gamma_0} f = \int_{\gamma_0} f$

Alternative statement: Let $f:\Omega\to\mathbb{C}$ be holomorphic on Ω , and $\gamma_0:[a,b]\to\Omega$ is a rectifiable curve which is null-homotopic (i.e. homotopic to a constant map). Then, $\int_{\mathbb{C}} f(z)\,dz=0$

Cauchy's theorem for convex domains

Let $\Omega \subseteq \mathbb{C}$ be a convex and open set and $f:\Omega \to \mathbb{C}$ be holomorphic on Ω . Then f has an anti derivative F on Ω , and if γ is a closed rectifiable curve on Ω then $\int_{\mathbb{R}} f = 0$.

Cauchy's integral formula

Let $f:\Omega\to\mathbb{C}$ be holomorphic. Fix $z_0\in\Omega$ and let r>0 be s.t. $\overline{B(z_0,r)}\subseteq\Omega$. Suppose γ is a closed curve in $\Omega\setminus\{z_0\}$ s.t. γ is homotopic to a reparametrization to γ_1 where $\gamma_1(t)=z_0+re^{it}$ for $t\in[0,2\pi]$. Then,

$$f(z_0) = \frac{1}{2\pi i} \int_{z} \frac{f(z)}{z - z_0} dz$$

Complex analytic function

An alternative statement, we say $f:\Omega\to\mathbb{C}$ is complex analytical if given $z_0\in\Omega,\exists\, B(z_0,r)\subseteq\Omega$ s.t. the formal power series $\sum_{n=0}^{\infty}a_n(z-z_0)^n$ converges in $B(z_0,r)$ to f.

then for every $n \in \mathbb{N}$, let $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} \, dz$ where $\gamma(t) = z_0 + re^{it}$ for $t \in [0, 2\pi]$. Then the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges in $B(z_0, r)$ to f(z).

Corollary: If $f:\Omega\to\mathbb{C}$ is holomorphic then f' is also holomorphic. Therefore f is infinitely differentiable.

Factor theorem for analytic function

For a analytic function $f: \Omega \to \mathbb{C}$ s.t. $f(z_0) = 0$ at $z_0 \in \Omega$, \exists a unique analytic function $g: \Omega \to \mathbb{C}$ s.t. $f(z) = (z - z_0)g(z)$

Principle of analytical continuation

- Let Ω be open and connected subset of C. and f, g: Ω → C be analytic functions on Ω. Suppose f, g agree on a non-empty subset of Ω, and this subset has an accumulation point. Then f ≡ g on Ω.
- A consequence to this is that, non-trivial holomorphic functions have isolated zeros.

Higher-order Cauchy integral formula

Let $f:\Omega\to\mathbb{C}$ be analytic on Ω and $z_0\in\Omega$ with $\overline{B(z_0,r)}\subseteq\Omega$. Let γ be a closed curve in $\Omega\setminus\{z_0\}$ that is homotopic to a reparametrization of γ_1 where $\gamma_1(t)=z_0+re^{it}$ for $t\in[0,2\pi]$. Then,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz$$

Cauchy estimates: If $|f(z)| \le M \ \forall z \in \gamma([0,2\pi])$ then, $\forall n \in \mathbb{N}$, then we have $|f^{(n)}(z_0)| \le \frac{Mn!}{r^n}$

Liouville's Theorem

Let f be a entire function which is bounded. Then f is a constant function.

Fundamental Theorem of Algebra

Let $p(z)=a_0+a_1z+\cdots+a_nz^n$ be a non constant polynomial s.t. $a_i\in\mathbb{C}, a_n\neq 0$. Then $\exists z_1,z_2,\ldots,z_n$ s.t. $p(z)=a_n(z-z_1)\ldots(z-z_n)$.

Morera's Theorem

Let $f:\Omega\to\mathbb{C}$ be a continuous function such that, $\int_\gamma f(z)\,dz=0, \forall$ closed polygonal paths $\gamma\in\Omega$. Then f is holomorphic on Ω .

Uniform limit of holomorphic functions

Let $f_n:\Omega\to\mathbb{C}$ be a holomorphic on $\Omega,\forall n\in\mathbb{N}$ s.t. f_n converges uniformly on compact sets to f. Then f is holomorphic.

Winding number

Let γ : $[a,b] \to \mathbb{C}$ be a closed curve and let z_0 be a point not in the image of γ . Then the winding number of γ around z_0 is

$$W_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

- · Winding number is invariant over homotopy.
- Let z_0 be a point not in the image of γ then $\exists r>0$ s.t. for $z\in B(z_0,r),W_\gamma(z_0)=W_\gamma(z)$
- · The winding number is always an integer.
- . The winding number is locally constant.

Generalized Cauchy Integral formula: Let $f:\Omega\to\mathbb{C}$ be holomorphic on Ω and $\gamma:[a,b]\to\Omega$ be a closed curve which is null homotopic. Then for z_0 not in the image of γ ,

$$f(z_0)W_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)} dz$$

Open Mapping Theorem

• $f: \Omega \to \mathbb{C}$ be holomorphic on Ω . Then $G: \Omega \times \Omega \to \mathbb{C}$ given by

$$G(z,w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{when } z \neq w \\ f'(z) & \text{when } z = w \end{cases}$$

then G is continuous

- Let f: Ω → C be holomorphic on some open set. Suppose z₀ ∈ Ω s.t. f'(z₀) ≠ 0. Then ∃ a neighbourhood U of z₀ ∈ Ω s.t. f restricted to U is injective. And U = f(U) is an open set and the inverse g: V → U of f is holomorphic.
- Let $f: \Omega \to \mathbb{C}$ be a non-constant holomorphic function on open, connected set Ω . Let $z_0 \in \Omega$ and $w_0 = f(z_0)$. Then \exists a neighbourhood U of z_0 and bijective holomorphic function φ on U s.t. $f(z) = w_0 + (\varphi(z))^m$ for $z \in U$ and some integer m > 0. And φ maps U unto B(0,r) for some r > 0.

Open Mapping Theorem: Let $f:\Omega\to\mathbb{C}$ be a non-constant holomorphic function on open connected set Ω , then $f(\Omega)$ is an open set.

Schwarz reflection principle

Let Ω be a open connected set which is symmetric w.r.t $\mathbb R.$ Then define the following,

- $\Omega_{+} = \{ z \in \Omega \mid \Im(z) > 0 \}$
- $\Omega_- = \{z \in \Omega \mid \Im(z) < 0\}$
- $I = \{z \in \Omega \mid \Im(z) = 0\}$

Schwarz reflection principle: Let Ω be defined as above. Then if $f:\Omega_+\bigcup I\to\mathbb{C}$ which is continuous on $\Omega_+\bigcup I$ and holomorphic on Ω_+ . Suppose for $f(x)\in\mathbb{R},\ \forall x\in I$ then there exists $g:\Omega\to\mathbb{C}$ holomorphic on Ω s.t. g(z)=f(z) for $z\in\Omega_+\bigcup I$

Singularity of a holomorphic function

- Isolated singularity: If f is holomorphic on $B(z_0,R)\setminus\{z_0\}$ for some R>0 then z_0 is called an isolated singularity.
- Removable singularity: Let z₀ be an isolated singularity of a holomorphic function f as defined above. It is called removable if there exists holomorphic function g on B(z₀, R) s.t. g(z) = f(z) on B(z₀, R) \ {z₀}.
- Riemann removable singularity theorem: Let z₀ be an isolated singularity of a function f, then z₀ is a removable singularity if and only if f is locally bounded around z₀.
- Essential singularity: A singularity that is neither removable nor a pole.

Doubly infinite series

Let z_n be a function defined for $n = 0, \pm 1, \pm 2, \cdots$, then it is doubly infinite.

• A doubly infinite series converges if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} a_n$, both con

- A doubly infinite series converges if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=1}^{\infty} a_{=n}$ both converge.
- Splitting up the series in similar manners you can define absolute and uniform convergence.

Annulus

An annulus $A(z_0,R_1,R_2)$ around a point z_0 for $0 \le R_1 \le R_2$ is the set of all $z \in \mathbb{C}$ s.t. $R_1 \le |z-z_0| \le R_2$.

Laurent series expansion

Let f be a function holomorphic on $A(z_0,R_1,R_2)$, then there exists $a_n\in\mathbb{C}$ for $n\in\mathbb{Z}$ s.t.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

where the doubly infinite series converges absolutely and uniformly in some $A(z_0, r_1, r_2)$ when $R_1 < r_1 < r_2 < R_2$.

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

where $\gamma(z) = z_0 + re^{it}$ for $t \in [0, 2\pi]$ and $R_1 < r < R_2$. Important results

- f has a removable singularity at $z_0 \iff a_n = 0$ for n < 0 in the Laurent series expansion of f
- f has a pole at z_0 of order $m \iff a_n = 0$ for n < -m in the Laurent series expansion of f.
- f has a essential singularity at $z_0 \iff a_n \neq 0$ for infinitely many negative integers n.

Casorati-Weierstrass theorem

Let z_0 be an essential singularity of f then given $\alpha \in \mathbb{C}$, there exists a sequence $z_n \in B(z_0,R) \setminus \{z_0\}$ s.t. $z_n \to z_0$ and $f(z_n) \to \alpha$.

 Alternatively, f approaches any given value arbitrarily closely in any neighborhood of an essential singularity.

Meromorphic functions

Let Ω be a open connected subset of $\mathbb C$ and let $S\subset \Omega$. Let $f:\Omega\setminus S\to \mathbb C$ be holomorphic on Ω . We say that f is a meromorphic function on Ω if,

- S is a discrete set.
- f either has removable singularities or poles at point of S.

Operations on meromorphic functions

Let $\mathcal{M}(\Omega)$ denote the equivalence classes of meromorphic functions over Ω .

- We say that two meromorphic functions f: Ω \ S₁ and g: Ω \ S₂ are equivalent if f(z) = q(z) on Ω \ (S₁ | S₂).
- For $f,g \in \mathcal{M}(\Omega)$, define f+g to be the equivalence class of $(f+g): \Omega \setminus (S_1 \cup S_2)$
- Similarly, fq is the equivalence class of fq: Ω\ (S₁ | S₂).

The space of all meromorphic functions is a field.

Order of meromorphic functions

The order of a meromorphic function is defined as follows,

- If $z_0 \in S$ is a removable singularity then the order of f at z_0 is the order of the zero at z_0 of f, i.e., $f(z) = (z z_0)^m g(z)$ then m is the order.
- If $z_0 \in S$ is a pole and the pole is of order m then order of f at z_0 is -m.
- $\operatorname{Ord}_{z_0}(f+g) \ge \min(\operatorname{Ord}_{z_0}(f), \operatorname{Ord}_{z_0}(g))$
- $Ord_{z_0}(fg) = Ord_{z_0}(f) + Ord_{z_0}(g)$

Residue of a function

Residue of a function: Let $f:\Omega\setminus S\to \mathbb{C}$ be a holomorphic function, where Ω is an open set and S is a discrete subset of Ω . Then for $z_0\in S$, let r>0 be s.t. $\overline{B(z_0,r)}\subseteq \Omega$ and $B(z_0,r)=\{z_0\}$. Then in $B(z_0,r)\setminus\{z_0\}$, consider the Laurent series expansion of f given by $f(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n$. We define the residue of f at z_0 to be Res $(f,z_0)=a_{-1}$.

- 1. If z_0 is a removable singularity then $Res(z_0) = 0$.
- 2. If z_0 is a pole of order m then $(z-z_0)^m f(z)=g(z)$, where $g(z)\neq 0$ on $B(z_0,r)\setminus \{z_0\}$ then, $\mathrm{Res}(z_0)=a_{m-1}=\frac{g^{(m-1)}(z_0)}{(m-1)^4}$.

Residue theorem

Let Ω be an open connected subset of $\mathbb C$ and S be a finite subset of Ω and let $f:\Omega\setminus S\to\mathbb C$ be a holomorphic function. Let γ be a null homotopic closed curve on Ω . Then,

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{k} W_{\gamma}(z_j) \operatorname{Res}(f, z_j)$$

where $S = \{z_1, \dots, z_k\}$ and W_{γ} is the winding number.

Log derivative

For a holomorphic function $f:\Omega\to\mathbb{C}$. Define the log derivative of f to be the meromorphic function $\frac{f'(z)}{f(z)}$.

- 1. $\frac{(fg)'}{fg} = \frac{f'}{f} + \frac{g'}{g}$
- 2. $\frac{(f/g)'}{(f/g)} = \frac{f'}{f} \frac{g'}{g}$
- 3. When f has a pole of order m at z_0 then for $f(z)=\frac{g(z)}{(z-z_0)^m}$ the log derivative of f is $\frac{g'(z)}{g(z)}-\frac{m}{(z-z_0)}$

Argument principle

Let $f:\Omega\backslash S\to\mathbb{C}$ be a meromorphic function s.t. f has zeros of order d_1,\ldots,d_n at $z_1,\ldots z_n$ after removing the removable singularities. And f has poles of order e_1,\ldots,e_m at points w_1,\ldots,w_m . Let γ be a closed curve which is null homotopic in Ω s.t. the zeros and poles don't lie in the image of γ . Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=0}^{n} d_i W_{\gamma}(z_i) - \sum_{j=1}^{m} e_j W_{\gamma}(w_j)$$

Rouche's theorem

Let γ be a closed curve which is null homotopic in Ω . Let f,g be functions holomorphic in Ω and |g(z)| < |f(z)| on γ then f and f+g have the same number of zeros counting multiplicities on the interior of $H([0,1] \times [a,b])$ where H is the null homotopy from γ to a constant path.

Branch of the complex logarithm

Let Ω be an open connected subset of $\mathbb{C}\setminus\{0\}$. Define a branch of the logarithm on Ω as a function $f:\Omega\to\mathbb{C}$ s.t. $\exp(f(z))=z, \forall z\in\Omega$. For $\Omega=\mathbb{C}\setminus\{\Re(x)\leq 0\}$ define the standard branch to be

$$Log(z) = ln |z| + iArg(z)$$

As defined above Log(z) is holomorphic on Ω .

Schwarz lemma

Let $\mathbb D$ denote the open unit disc. Let $f:\mathbb D\to\mathbb D$ be a holomoprhic function s.t. f(0)=0. Then,

$$|f(z)| \leq |z|, \forall z \in \mathbb{D}, \text{ and } |f'(z)| \leq 1$$

Also, if |f(z)|=|z| for some $z\in\mathbb{D}$ or if |f'(0)|=1 then $\exists \lambda\in\mathbb{C}, |\lambda|=1$ s.t. $f(z)=\lambda z$.

Automorphism

A function $f: \overline{\Omega} \to \Omega$ is an automorphism if f is holomorphic and has a holomorphic inverse.

Automorphisms of the unit disc

Define a function $\varphi_{\alpha}: \mathbb{D} \to \mathbb{C}$ defined as $\varphi_{\alpha}(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$. Let $f: \mathbb{D} \to \mathbb{D}$ be an automorphism. Then there exists $\alpha \in \mathbb{D}$ and $\lambda \in \partial \mathbb{D}$ s.t.

$$f(z) = \lambda \varphi_{\alpha}(z)$$

Phragmén-Lindelöf method

Let $\Omega=\{z\in\Omega: a<\Re(z)< b\}$. Let $f:\overline{\Omega}\to\mathbb{C}$, s.t. f is continuous on $\overline{\Omega}$ and holomorphic on Ω . Suppose for some z=x+iy, we have |f(z)|< B and let $M(x)=\sup\{|f(x+iy)|:-\infty< y<\infty\}$. Then,

$$M(x)^{b-a} \leq M(a)^{b-x}M(b)^{x-a}$$

And further

$$|f(z)| \leq M(x) \leq \max\{M(a), M(b)\} = \sup_{z \in \partial \Omega} |f(z)|$$

Schwarz-Pick theorem

First define $ho(z,w)=\left|rac{z-w}{1-\overline{w}z}\right|$ for $z,w\in\mathbb{D}.$ Let $f:\mathbb{D}\to\mathbb{D}$ be holomorphic. Then

$$\rho(f(z), f(w)) \le \rho(z, w) \ \forall z, w \in \mathbb{D}$$

and,

$$\frac{|f'(z)|}{1-|f(z)|^2} \leq \frac{1}{1-|z|^2} \, \forall z \in \mathbb{D}$$

Lifting of maps

Let X,Y,Z be open subsets of $\mathbb C$ and let $f:Y\to X$ and $g:Z\to X$ be continuous maps. Then we say, a map $\widetilde g:Z\to Y$ is a lift of g w.r.t. f if $f\circ\widetilde g=g$.

Uniqueness of lifts: Let X,Y,Z be open connected subsets of $\mathbb C$ and let $f:Y\to X$ be a local homeomorphism. Let $g:Z\to X$ be a continuous map. Let $\widetilde{g_1}$ and $\widetilde{g_2}$ be lifts of g w.r.t. f and suppose they are equal at some point in Z. Then $\widetilde{g_1}\equiv \widetilde{g_2}$.

- Let $f:Y \to X$ be a holomorphic map s.t. $f'(y) \neq 0$ on Y. Let $g:Z \to X$ be a holomorphic map s.t. $\widetilde{g}:Z \to Y$ is a lift of g w.r.t. f. Then \widetilde{g} is holomorphic.
- Let X,Y be open subsets of $\mathbb C$ let, $f:Y\to X$ be a local homeomorphism. Let γ_0,γ_1 be curves in X from z_1 to z_2 which are homotopic. Suppose that for every $s\in [0,1]$, we can lift $\gamma_s(t)=H(s,t)$ to a path $\widetilde{\gamma}_s:[a,b]\to Y$ w.r.t. f s.t. $\widetilde{\gamma}_s(a)=\widetilde{z_1},\ \forall s\in [0,1].$ Then $\widetilde{\gamma_0},\widetilde{\gamma_1}$ are homotopic in Y.

Covering spaces

Let X,Y be open subsets of $\mathbb C$. We say that a continuous map $f:Y\to X$ is a covering map if given $x\in X$ there exists a neighbourhood U of X and open sets $\{V_{\alpha}\}_{\alpha\in A}$ in Y s.t. $f^{-1}(U)=\coprod_{\alpha\in A}V_{\alpha}$ (disjoint union of V_{α}) and $f|_{V_{\alpha}}:V_{\alpha}\to U$ is a homeomorphism. Then Y is called a cover of X.

- Let $f: Y \to X$ be a covering map and $\gamma[a,b] \to X$ be a curve from x_0 to x_1 in X. Suppose $y_0 \in f^{-1}(\{x_0\})$. Then there exists a unique lift $\widetilde{\gamma}[a,b] \to Y$ of γ w.r.t. f s.t. $\widetilde{\gamma}(a) = y_0$.
- For connected X let f: Y → X be a covering map. Suppose x₀, x₁ ∈ X.
 Then the cardinality of f⁻¹(x₀) is the same as the cardinality of f⁻¹(x).
- For open subsets X, Y of C let, f: Y → X be a covering map from Y to X. Let Z be an open connected subset of C, which is simply connected and locally connected. Suppose g: Z → X is a continuous map. Then given z₀ ∈ C and y₀ ∈ Y s.t. g(z₀) = f(y₀), then there exists a unique lift g̃: Z → Y of g w.r.t f.
- Let Ω be a simply connected, locally connected, open connected subset of \mathbb{C} and $g:\Omega\to\mathbb{C}^*$ be a holomorphic map. Then there exists a lift $\widetilde{g}:\Omega\to\mathbb{C}$ s.t. $\exp(\widetilde{g})=g$.

Bloch's theorem

- For $f:\mathbb{D}\to\mathbb{C}$ s.t. f(0)=0,f'(0)=1 and $|f(z)|\leq M\ \forall z\in\mathbb{D}.$ Then $B(0,\frac{1}{6M})\subseteq f(\mathbb{D}).$
- Let $f: B(0, R) \to \mathbb{C}$ be holomorphic s.t. f(0) = 0, $f'(0) = \mu$ for some $\mu > 0$ and $f|(z)| \le M \ \forall z \in B(0, R)$. Then, $B(0, \frac{R^2 \mu^2}{6M}) \subseteq f(B(0, R))$.

Bloch's theorem: Let Ω be an open connected subset of $\mathbb C$ s.t. $\overline{\mathbb D}\subset\Omega$. Let $f:\Omega\to\mathbb C$ s.t. f(0)=0, f'(0)=1. Then there exists a ball B' contained in $\mathbb D$ s.t. $f|_{B'}$ is injective and $B(0,\frac{1}{72})\subseteq f(B')\subseteq f(\mathbb D)$.

Little Picard's theorem

- Let Ω be an open connected subset of $\mathbb C$ which is simply connected. Let $f:\Omega\to\mathbb C$ which omits 0 and 1. Then there exists a holomorphic function $g:\Omega\to\mathbb C$ s.t. $f(z)=-\exp(\pi i\cosh(2g(z)))$
- The function *g* as defined above doesn't contain any disk of radius 1.

Little Picard's theorem: If f is an entire function which omits two points, then f is a constant function.