Harold's Counting Cheat Sheet 12 February 2025 (See also Harold's Sets Cheat Sheet) #### **Counting Rules** | Rule | Description | Comments | |-----------------------------|---|--| | Cardinality | The cardinality of A is the number of elements in set $A = A $ | if A = {(1,2), (3,4), (5,6)},
then A = 3 Also denoted n(A) Cardinality = Counting | | Product Rule | Let A_1,A_2,\ldots,A_n be finite sets. Then, $ A_1\times A_2\times\cdots\times A_n = A_1 \bullet A_2 \bullet\cdots\bullet A_n $ | Counts sequencesThink Intersection (∩) | | Sum Rule | Consider n sets, A_1, A_2, \ldots, A_n . If the sets are mutually disjoint (A _i \cap A _j = \emptyset for i \neq j), then $ A_1 \cup A_2 \cup \ldots \cup A_n = A_1 + A_2 + \cdots + A_n $ | Counts sequencesThink Union (∪) | | Generalized
Product Rule | $ S = n_1 \cdot n_2 \cdot \cdots \cdot n_k$ $n! = (n)(n-1)(n-2) \dots (2)(1)$ | In selecting an item from a set, if the number of choices at each step is independent, then the number of items in the set is the product of the number of choices in each step. | | Bijection Rule | Let S and T be two finite sets. If there is a bijection from S to T, then $ S = T $ | • 1-to-1 Correspondence | | k-to-1 Rule | $ Y = \frac{ X }{k}$ | k-to-1 Correspondence | ## **Counting Formulas & Techniques** | Rule | Description | Comments | |---------------------|---|--| | Factorial | $n!$ $= n \cdot (n-1) \cdot (n$ $-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$ | The number of permutations of a finite set with n elements is P(n,n) | | Permutation | $P(n,r) = {}_{n}P_{r} = \frac{n!}{(n-r)!}$ $= n(n-1)\dots(n-r+1)$ | Order matters (,) r-permutation Counting sequences Common application of the generalized product rule Order can be fixed but arbitrary Elements cannot be repeated Use when elements are all different | | Grouping | Password length is 18. No character repeats. Must contain: a, z, 1, and 9. $P(18,4) \bullet P(36-4,18-4)$ | Combines permutation with product rule | | Combination | $C(n,r) = {}_{n}C_{r} = {n \choose r}$ $= \frac{n!}{r! (n-r)!}$ | Order does not matter { , } Counting subsets r-combination n choose r Counting the r-subsets Combination = subset Use when elements are all identical | | | Identity: | An equation is called an identity if the equation holds for all values for which the expressions in the equation are well defined. | | Counting
Subsets | Bijection from:
5-bit strings with exactly 2 1's
To:
2-subsets of $\{1, 2, 3, 4, 5\} =$
$\binom{5}{2} = 10$ | Binary example Counting Strings by Counting Subsets | | | $\binom{m+n}{m}$ | Counting paths on a grid {N, E} Binary example if m = #1s & n = #0s | ## **Counting with Discrete Probability** | Rule | Formula | Definition | |------------------------------------|---|---| | Notation | ∩ = Intersection or ""and" U = Union or "or" _ = Negation or "not" | "and" implies multiplication. "or" implies addition. "not" implies negation. | | Independent | If $P(A B) = P(A)$ | The occurrence of one event does not affect the probability of the other event, or vice versa. | | Mutually
Independent | No sets overlap. Future outcomes are not impacted by previous outcomes. | Applies to more than two events | | Dependent | If $ A \cap B \neq 0$ | The occurrence of one event affects the probability of the other event. | | Disjoint
("mutually exclusive") | If $ A \cap B = 0$, then $ A \cap B = A + B $ | The events can never occur together. | | Probability
("likelihood") | $P(E) = \frac{ E }{ S }$ | S = Sample space or entire set A, B, E = Event or subset 0 ≤ P(E) ≤ 1 | | | $ A \cup B $ $= A + B - A \cap B $ | Inclusion-Exclusion Principle Let A, B and C be three finite sets, then If sets overlap, then don't double count " in any of the 3." " divisible by 2, 3,or 5." | | Addition Rule | $ A \cup B \cup C = A + B + C - A \cap B - B \cap C - A \cap C + A \cap B \cap C $ | | | ("or") | $ A \cup B \cup C \cup D $ $= A + B + C + D $ $- A \cap B - A \cap C - A \cap D - B \cap C - B \cap D - C \cap D $ $+ A \cap B \cap C + A \cap B \cap D + A \cap C \cap D + B \cap C \cap D $ $- A \cap B \cap C \cap D $ | | | | if mutually independent / disjoint: $ A_1 \cup A_2 \cup \cup A_n = A_1 + A_2 + \cdots + A_n $ | A collection of sets is mutually disjoint if the intersection of every pair of sets in the collection is empty. Restatement of the Sum Rule | | Multiplication Rule
("and") | $ A \cap B = A \cdot (B \mid A) $ $ A \cap B = B \cdot (A \mid B) $ $ A \cap B = A - A \cap \overline{B} $ if independent / disjoint: $ A \cap B = A \cdot B $ if mutually independent / disjoint: $ A \cap B \cap C = A \cdot B \cdot C $ $ A_1 \cap A_2 \cap \cap A_n $ | | |--|---|--| | Complement Rule /
Subtraction Rule
("not") | $P(S) = P(E \cup \overline{E})$ $ E + \overline{E} = S $ $ E = S - \overline{E} $ $ (A \mid B) + (\overline{A} \mid B) = A $ | S = entire set, E = subset The complement of event E (denoted E or E^c) means "not E"; It consists of all simple outcomes that are not in E. "has at least one" so choose E as "none" | | Union by Compliment | $ S - \overline{E_1 \cup E_2 \cup \ldots \cup E_n} = E_1 \cup E_2 \cup \ldots \cup E_n $ | S = U = Universal set (all) E.g., 10⁴ - 9⁴ | | Conditional
Probability
("given that") | $P(A \mid B) = \frac{ A \cap B }{ B }$ if independent / disjoint: $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = P(A)$ $ (A \mid B) = A $ $ (B \mid A) = B $ | Means the probability of event A given that event B has already occurred. Is a rephrasing of the Multiplication Rule. P(A B) is the proportion of elements in B that are ALSO in A. | | Total Probability Rule | $P(A) = P(A \cap B_1) + \dots + P(A \cap B_n)$ $= P(B_1) \cdot P(A \mid B_1) + \dots + P(B_n)$ $\cdot P(A \mid B_n)$ $P(A) = P(A \cap B) + P(A \cap \overline{B})$ $= P(A \mid B) \cdot P(B) + P(A \mid \overline{B}) \cdot P(\overline{B})$ | To find the probability of event A, partition the sample space into several disjoint events. A must occur along with one and only one of the disjoint events. | | Bayes' Theorem | $P(A \mid B) = \frac{ A \cap B }{ B } = \frac{ (B \mid A) \cdot A }{ B }$ $= \frac{ (B \mid A) \cdot A }{ (B \mid A) \cdot A + (B \mid \overline{A}) \cdot \overline{A} }$ | Allows P(A B) to be calculated from P(B A). Meaning it allows us to reverse the order of a conditional probability statement, and is the only generally valid method! | #### Sources: • <u>SNHU MAT 230</u> - Discrete Mathematics, zyBooks.