Harold's Ordinary Differential Equations (ODE) Cheat Sheet 22 September 2025 #### Classification | Term | Definition | | |---|---|--| | Ву Туре | | | | Differential Equation (DiffEq) | A mathematical equation that relates a function to its derivatives. | | | Ordinary Differential
Equation (ODE) | A differential equation that involves an unknown function and its derivatives with respect to a single independent variable. For example: $\frac{dy}{dx} = x^2 + 3x$ | | | Partial Differential
Equation (PDE) | A type of equation that involves an unknown function and its partial derivatives with respect to multiple independent variables. For example: $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$ | | | Systems of Differential | Uses vector notation. For example: | | | Equations | x' = Ax | | | By Order | | | | Order | The order of the highest derivative in the equation. $y' = 1^{st}$ order $y'' = 2^{nd}$ order $y''' = 3^{rd}$ order $y^{(4)} = 4^{th}$ order | | | By Linearity | | | | General Solution | A family of functions that has parameters and does not take any initial conditions into account. | | | Particular Solution
(Actual Solution) | Has no arbitrary parameters and satisfies the initial conditions. | | | Singular Solution | Cannot be obtained from the general solution. | | | Linear Equation $ y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) $ where each $a_i(x)$ is a function of x . | | | | Nonlinear Equation | An equation that contains functions of y , such as e^y , or functions of the derivatives of y , such as $(5y)y''$, $sin(y')$, or $\left(\frac{dy}{dx}\right)^2$. | | #### **Terms and Notation** | Notation | Expanded Form | Description | | |----------|---|--|--| | x, y, t | <i>x</i> , <i>y</i> , <i>t</i> | Variables for space and time | | | f | f = f(x) or y | The function of a single independent variable. | | | f' | $\frac{df}{dx}, \frac{dy}{dx}, or y'$ | The derivative of f with respect to x . | | | f_x | $\frac{\partial f}{\partial x}$ | The partial derivative of f with respect to x . | | | y_p | Particular solution to the equation. | | | | IVP | Initial value problem. An initial condition that specifies the value of the unknown function at a given point in the domain so a particular solution can be found. e.g., $y(0) = 1, y'(0) = -1$ | | | | Γ(t) | Gamma Function | The Gamma function is the continuous version of the discrete factorial function, $n!$. $\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} \ dx$ $\Gamma(n+1) = n!$ | | #### **Direction Fields** | Name | Slope Equation | Graph | |---|--|---| | Direction Field
(Slope Field) | $y' = x + y$ General Solution: $y(x) = c_1 e^x - x - 1$ | - / / / / / / / / / / / / / / / / / / / | | Solution Curve | $\frac{dy}{dx} = x + y$ Initial Condition: $y(0) = 1$ Particular Solution: $y(x) = 2e^x - x - 1$ | | ### 1st-Order Linear | Technique | Form of Equation | Solution Method | |---|---|--| | 1 st -Order | F(x,y,y')=0 | $I.F. = e^{\int a(x) dx}$ | | | $y' + a(x)y = f(x)$ $\frac{dy}{dx} = f(x)$ | $y = Ce^{-\int a(x) dx}$ | | Single Variable | $\frac{dy}{dx} = f(x)$ | $y(x) = \int f(x) \ dx + C$ | | Separable Equations
(Separation of
Variables) | $\frac{dy}{dx} = f(x, y) = \frac{g(x)}{f(y)}$ | $\int f(y) dy = \int g(x) dx + C$ | | Integration Factor $(I(x,y) = \mu(x))$ | $\frac{dy}{dx} + P(x)y = Q(x)$ $\mu(x) = e^{\int P(x) dx}$ | 1. $\mu(x) = e^{\int P(x) dx}$
2. Multiplying the entire equation by $\mu(x)$. $\mu(x) \frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x)$
3. But the derivative of the product is: $\frac{d(\mu(x)y(x))}{dx} = \mu(x)\frac{dy}{dx} + \mu(x)P(x)y$
4. $\mu(x)y(x) = \int \mu(x) Q(x) dx + C$
5. $y(x) = \frac{\int \mu(x) Q(x) dx + C}{\mu(x)}$ | | Exact Equations | $M(x,y) dx + N(x,y) dy = 0$ $= dg(x,y)$ $Iff \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ | Find $g(x, y)$ by integrating and comparing: $\int M(x, y) dx and \int N(x, y) dy$ | | Non-Exact Equations | Reduction to Exact via Integrating $I(x,y) \left[M(x,y) \right]$ | g Factor.
$y) + N(x, y) \frac{dy}{dx} = 0$ Then | | Case 1: $\mu(x)$ | $\mu_1(x) \equiv \frac{M_y - N_x}{N}$ | $I(x,y) = e^{\int \mu_1(x) dx}$ | | Case 2: μ(y) | $\mu_2(y) \equiv \frac{N_x - M_y}{M}$ | $I(x,y) = e^{\int \mu_2(y) dy}$ | | Case 3: $\mu(xy)$ | $\mu_2(y) \equiv \frac{N_x - M_y}{M}$ $\mu_3(xy) \equiv \frac{x(N_x - M_y)}{yM - xN}$ | $I(x,y) = e^{\int \mu_3(xy) d(xy)}$ | | Bernoulli | $\frac{dy}{dx} + P(x)y = Q(x)y^n$ | If $n=0$ or $n=1$, this is linear, else 1. Divide by $\frac{1}{y^n}$ 2. Change variable $z=\frac{1}{y^{1-n}}$ 3. Apply substitution to get a linear form 4. Use an integrating factor to solve | | | | T | | |-------------------------------|---|---|--| | Homogeneous | M(x,y) dx + N(x,y) dy = 0
where $M(x,y)$ and $N(x,y)$ are
homogeneous functions of the
same degree n, meaning:
$M(\lambda x, \lambda y) = \lambda^n M(x,y)$
$N(\lambda x, \lambda y) = \lambda^n N(x,y)$ | 1. Start with: $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$ 2. Reduce to separation of variables using: $v = \frac{y}{x}$ $y = vx$ 3. Product rule: $\frac{dy}{dx} = v + x \frac{dv}{dx}$ 5. Rewrite in terms of $\frac{dv}{dx}$. | | | Substitution | $\frac{dy}{dx} = F(ax + by + c)$ | 1. Set $v = ax + by + c$ 2. Solve for y 3. Find $\frac{dy}{dx}$ in terms of $\frac{dv}{dx}$ 4. Rewrite the equation in terms of $\frac{dv}{dx}$ | | | Reduction by | $y' = \frac{Ax + By + C}{Dx + Ey + F}$ | | | | Translation | If | Then | | | Case 1: Intersecting
Lines | A ≠ B
D ≠ E | Put x = X + h and y = Y + k Find h and k Solve using separation of variables Translate back | | | Case 2: Parallel
Lines | A = B $D = E$ | 1. Put $u = Ax + By$ $y' = \frac{u' - A}{B}$ 2. Solve | | # 2^{nd} -Order Linear Homogeneous (= 0) | Technique | Form of Equation | Solution Method | |---|---|--| | 2 nd -Order | F(x,y,y',y'') = 0 | Typical case has all constant (a, b, c) coefficients instead of functions of x. | | Homogeneous | P(x)y'' + Q(x)y' + R(x)y = 0 $ay'' + by' + cy = 0$ If | $y(x) = c_1 y_1(x) + c_2 y_2(x)$ | | Principle of
Superposition | $y'' + ay' + by = f_1(x)$ has solution $y_1(x)$ and $y'' + ay' + by = f_2(x)$ has solution $y_2(x)$ | then $y'' + ay' + by = f(x) = f_1(x) + f_2(x)$ has solution $y(x) = c_1y_1(x) + c_2y_2(x)$ | | Characteristic Equation (Constant Coefficients) | $ay'' + by' + cy = 0$ $\downarrow ar^2 + br + c = 0$ If | All solutions are in the form: $y(x) = e^{rx}$ Roots: r_1, r_2 | | Case 1: Distinct
Roots | $r_1, r_2 \in \mathbb{R}$ $r_1 \neq r_2$ | 1. Set $y_1(x) = e^{r_1x}$ $y_2(x) = e^{r_2x}$ 2. Superposition gives $y(x) = c_1e^{r_1x} + c_2e^{r_2x}$ | | Case 2: Repeated
Root | $r_1, r_2 \in \mathbb{R}$ $r_1 = r_2 = r$ | $y(x) = c_1 e^{rx} + c_2 x e^{rx}$ | | Case 3: Complex
Roots | $r_{1,2}=\lambda\pm\mui$ with $\lambda=-\frac{b}{2a},\qquad \mu=\frac{\sqrt{4ac-b^2}}{2a}$ | 1. Set $y_1(x) = e^{(\lambda + \mu i)x}$ $y_2(x) = e^{(\lambda - \mu i)x}$ 2. Superposition gives $y(x) = c_1 e^{(\lambda + \mu i)x} + c_2 e^{(\lambda - \mu i)x}$ 3. Apply $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ 4. $y(x) = c_1 e^{\lambda x} \cos(\mu x) + c_2 e^{\lambda x} \sin(\mu x)$ | | Reduction of Order | P(x)y'' + Q(x)y' + R(x)y = 0 | If we already know y_1 , 1. Put $y_2 = vy_1$ 2. Expand in terms of v'' , v' , v 3. Put $z = v'$ 4. Solve the reduced equation | | Wronskian
(Linear
Independence) | $y_1(x)$ and $y_2(x)$ are linear independent iff | $W(y_1, y_2)(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \neq 0$ | | Euler-Cauchy
Equation | $x^{2}y'' + axy' + by = 0$ where $x \neq 0$ $A.E.: \lambda(\lambda - 1) + a\lambda + b = 0$ | 1. $y(x)$ of the form x^{λ}
2. Reduction to Constant Coefficients:
Use $x = e^t$, $t = \ln x$
3. Rewrite in terms of t using chain rule. | | Case 1: Distinct
Roots | $\lambda_1, \lambda_2 \in \mathbb{R}$ $\lambda_1 \neq \lambda_2$ $x \neq 0$ | $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ | | Case 2: Repeated | $\lambda_1, \lambda_2 \in \mathbb{R}$ | $v(u) = v\lambda(a + a + b + u)$ | |------------------|---------------------------------------|---| | Root | $\lambda_1 = \lambda_2 = \lambda$ | $y(x) = x^{\lambda}(c_1 + c_2 \ln x)$ | | Case 3: Complex | $1 - \alpha + i\theta$ | $y(x) = x^{a}(c_{1}\cos(\beta \ln x))$ | | Roots | $\lambda_{1,2} = \alpha \pm i\beta$ | $+ c_2 \sin(\beta \ln x)$ | # 2^{nd} -Order Linear Non-Homogeneous (= f(x)) | Technique | Form of Equation | Solution Method | | |---------------------------------------|---|--|--| | | | $y = y_h + y_p$ | | | and Ouder | F(x,y,y',y'')=f(x) | $= c_1 y_1(x) + c_2 y_2(x) + y_p(x)$ | | | 2 nd -Order | y'' + a(x)y' + b(x)y = f(x) | where the general solution includes the particular solution, y_p . | | | | P(x)y'' + Q(x)y' + R(x)y | | | | Non-Homogeneous | =f(x) | If homogeneous, then $f(x) = 0$. | | | 3 | $ay'' + by' + cy = f(x)$ $f(x) \neq 0$ | | | | Case 1: y', y Missing | $y^{\prime\prime}=f(x)$ | $y(x) = \iint f(x) \ dx$ | | | Case 2: y Missing | $y^{\prime\prime}=f(y^\prime,x)$ | 1. Change of variable: $p = y'$ | | | , y | , | 2. Solve twice
1. Change of variable: $p = y' + \text{chain}$ | | | | | rule | | | | | 2. $p \frac{dp}{dy} = f(p, y)$ is a 1 st -order ODE | | | Case 3: x Missing | $y^{\prime\prime}=f(y^\prime,y)$ | 3. Solve it | | | | | 4. Back-replace p | | | | | 5. Solve again | | | | | 1. Change of variable: $p = y' + \text{chain}$ | | | | | rule $2 n^{\frac{dp}{dp}} - f(y) \text{ is a sonaration of}$ | | | Case 4: y', x Missing | y'' = f(y) | 2. $p \frac{dp}{dy} = f(y)$ is a separation of variables | | | , , , , , , , , , , , , , , , , , , , | , , , , | 3. Solve it | | | | | 4. Back-replace <i>p</i> | | | | | 5. Solve again | | | | | has $f(x)$ with undetermined constant | | | | coefficients. | | | | Method of | Valid forms: 1. $P_n(x)$ | | | | Ondetermined $P(x) e^{ax}$ | | | | | Coefficients
(Guesswork) | 3. $e^{ax} (P_n(x) \cos bx + Q_n)$ | $(x)\sin bx$ | | | | Failure case: If any term of $f(x)$ | is a solution of y_b , multiply y_p by x and | | | | repeat until it works. | | | # **Laplace Transforms** | Technique | Equation | | Solution | |-------------------------------------|--|----------------------------|--| | | | $\mathcal{L}{f(t)}$ | =F(s) | | Laplace Transform | An integral transform that converts a function of a real variable (usually t, in the time domain) to a function of a complex variable s in the complex-valued frequency domain (s domain). NOTE: Frequency s = 1/t Transforms ODEs into algebraic equations. The substitution x = e^{-s} makes the integral look like a formal power series, with f(t) being the coefficient of x^t. The z-transform is the discrete analog of the Laplace transform in signal processing. | | | | Inverse Laplace Transform | | $\mathcal{L}^{-1}\{F(s)\}$ | $ \cdot = f(t)$ | | Laplace Transform
Equation | $\mathcal{L}^{-1}\{F(s)\} = f(t)$ $\mathcal{L}\{f(t)\} = F(s) = \int\limits_0^\infty e^{-sx}f(t) \ dt$ where $ \qquad \qquad \bullet f(t) \text{ must be defined on } 0 \leq t \leq \infty $ $ \qquad \bullet s \text{ is an arbitrary real variable} $ $ \qquad \bullet \text{The improper integral must converge} $ | | | | Transform of a Derivative | Theorem : If $f(t)$, $f'(t)$,, $f^{(n-1)}(t)$ are continuous on $[0,\infty)$ and ar of exponential order, and if $f^{(n)}(t)$ is piecewise continuous on $[0,\infty)$ then the Laplace transform of the n th derivative of $f(t)$ is given by the general n th order derivative equation below. | |) is piecewise continuous on $[0,\infty)$, n^{th} derivative of $f(t)$ is given by the | | | First-order derivative | | $\mathcal{L}{f'(t)} = s \mathcal{L}{f(t)} - f(0)$ | | | Second-order derivative | $\mathcal{L}\{f''($ | $t)\} = s^2 \mathcal{L}\{f(t)\} - s f(0) - f'(0)$ | | Laplace Transform of
Derivatives | Third-order derivative | $\mathcal{L}\{f'''(t)\}$ | $\begin{aligned} f(t) &= s^2 \mathcal{L}\{f(t)\} - s f(0) - f'(0) \\ f(t) &= s^3 \mathcal{L}\{f(t)\} - s^2 f(0) - s f'(0) \\ f''(0) &= s^3 \mathcal{L}\{f(t)\} - s^2 f(0) - s f'(0) \end{aligned}$ | | | n th order derivative | | $-f''(0)$ $f''(t) = s^{n} \mathcal{L}\{f(t)\} - s^{n-1}f(0)$ $f''(t) = s^{n-2}f'(0) - \dots - f^{(n-1)}(0)$ | | | | | uations with constant coefficients. | | Using Laplace to Solve a DiffEq | 2. Solve the resulting function $F(s)$. | ng algebr | n to each term in the IVP. Taic equation for the transformed Transform to find the solution. | # Table of Laplace Transforms (s>0) | # | f(t) | $\mathcal{L}\{f(t)\} = F(s)$ | |----|--|---| | 1 | f'(t) | sF(s) - f(0) | | 2 | f''(t) | $s^2F(s) - sf(0) - f'(0)$ | | 3 | f'''(t) | $s^3F(s) - s^2f(0) - sf'(0) - f''(0)$ | | 4 | $f^{(4)}(t)$ | $s^4F(s) - s^3f(0) - s^2f'(0) - sf''(0) - f'''(0)$ | | 5 | $f^{(n)}(t)$ | $sF(s) - f(0)$ $s^{2}F(s) - sf(0) - f'(0)$ $s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0)$ $s^{4}F(s) - s^{3}f(0) - s^{2}f'(0) - sf''(0) - f'''(0)$ $s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$ 1 | | 6 | 1 | | | 7 | e ^{at} | $\frac{\overline{s}}{1}$ | | 8 | te ^{at} | $\frac{s-a}{1}$ $\frac{1}{(s-a)^2}$ | | 9 | $t^n e^{at}$ | $\frac{\overline{(s-a)^2}}{n!}$ | | 10 | $(n = 1, 2, 3, \dots)$ $e^{at} - e^{bt}$ | $\frac{(s-a)^{n+1}}{1}$ | | | a-b | (s-a)(s-b) | | 11 | $\frac{a-b}{ae^{at}-be^{bt}}$ $\frac{a-b}{a-b}$ | $\frac{\overline{(s-a)(s-b)}}{\overline{(s-a)(s-b)}}$ 1 | | 12 | t | $\frac{1}{s^2}$ $n!$ | | 13 | t^n $(n = 1, 2, 3, \dots)$ | $\frac{n!}{2^{n+1}}$ | | 14 | $(n = 1, 2, 3, \dots)$ t^{p} $(p \ge -1 \in \mathbb{R})$ | $\frac{\Gamma(p+1)}{s^{p+1}}$ | | 15 | \sqrt{t} | $\frac{\overline{s^{n+1}}}{\frac{\Gamma(p+1)}{s^{p+1}}}$ $\frac{\sqrt{\pi}}{\frac{3}{2s^{\frac{3}{2}}}}$ | | 16 | $t^{n-\frac{1}{2}}$ (n = 1, 2, 3,) | $\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{\frac{2^n s^{n+\frac{1}{2}}}{a}}$ | | 17 | sin(at) | $\frac{\frac{a}{a}}{s^2 + a^2}$ | | 18 | cos(at) | $\frac{s}{s^2 + a^2}$ $s \sin(b) + a \cos(b)$ | | 19 | sin(at+b) | | | 20 | cos(at+b) | $\frac{s^2 + a^2}{s\cos(b) - a\sin(b)}$ $\frac{s^2 + a^2}{s^2 + a^2}$ | | 21 | t sin(at) | $ \begin{array}{r} $ | | 22 | t cos(at) | $\frac{s^2 - a^2}{(s^2 + a^2)^2}$ | | 23 | $\frac{1}{t}\sin(at)$ | $\arctan\left(\frac{a}{s}\right)$ | | 24 | e ^{at} sin (bt) | $\frac{b}{(s-a)^2+b^2}$ | | 25 | e ^{at} cos (bt) | $\frac{s-a}{(s-a)^2+b^2}$ $2a^3$ | |----|---|--| | 26 | sin(at) - at cos(at) | ·· | | 27 | sin(at) + at cos(at) | $\frac{\overline{(s^2 + a^2)^2}}{2as^2}$ | | 28 | cos(at) - at sin(at) | $\frac{\overline{(s^2+a^2)^2}}{s(s^2-a^2)}$ | | | | $\frac{(s^2 + a^2)^2}{(s^2 + 3a^2)}$ | | 29 | cos(at) + at sin(at) | $\frac{s(s^2 + 3a^2)}{(s^2 + a^2)^2}$ | | 30 | sinh (at) | $\frac{a}{S^2 - a^2}$ | | 31 | cosh (at) | $\frac{\frac{s}{s^2 - a^2}}{2as}$ | | 32 | t sinh (at) | $ \frac{2as}{(s^2 - a^2)^2} $ $ s^2 - a^2 $ | | 33 | t cosh (at) | $\frac{s^2 - a^2}{(s^2 - a^2)^2}$ | | 34 | e ^{at} sinh (bt) | $\frac{b}{(s-a)^2 - b^2}$ | | 35 | e ^{at} cosh (bt) | $\frac{s-a}{(s-a)^2 - b^2}$ $F(s-a)$ $-F'(s)$ | | 36 | $e^{at}f(t)$ | F(s-a) | | 37 | • | -F'(s) | | 38 | $tf(t)$ $t^{n} f(t)$ $(n = 1, 2, 3,)$ | $(-1)^n F^{(n)}(s)$ | | 39 | $(n = 1, 2, 3,)$ $\frac{1}{t} f(t)$ | $\int_{-\infty}^{\infty} F(u) \ du$ | | 40 | f(ct) | $\int_{S} F(u) du$ $\frac{1}{c} F\left(\frac{s}{c}\right)$ | | 41 | $u_a(t) = u(t-a)$ Heaviside Function | $\frac{1}{s}e^{-as}$ | | 42 | $\delta(t)$ | 1 | | 43 | $\delta(t-a)$ | e^{-as} | | 44 | $u_{\tau}(t) f(t-a)$ | $e^{-as} F(s)$ | | 45 | $u_a(t) q(t)$ | $e^{-as} \mathcal{L}\{q(t+a)\}$ | | 46 | $\int_{0}^{t} f(v) dv$ | $e^{-as} \mathcal{L}\{g(t+a)\}$ $\frac{1}{s}F(s)$ | | 47 | $u_{a}(t) f(t-a)$ $u_{a}(t) g(t)$ $\int_{0}^{t} f(v) dv$ $\int_{0}^{t} f(t-\tau) g(\tau) d\tau$ | F(s) G(s) | | 48 | f(t+T) = f(t) | $\frac{\int_0^T e^{-st} f(t) dt}{1 - \frac{s^T}{2}}$ | | 49 | af(t) + ha(t) | $\frac{1-e^{-st}}{aF(s)+bG(s)}$ | | 50 | $\frac{af(t) + bg(t)}{\frac{1}{\sqrt{\pi t}}e^{\frac{-a^2}{4t}}}$ | $\frac{\int_{0}^{T} e^{-st} f(t) dt}{1 - e^{-sT}}$ $aF(s) + bG(s)$ $\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$ | | | | | | 51 | $\frac{a}{2\sqrt{\pi t^3}}e^{\frac{-a^2}{4t}}$ | $e^{-a\sqrt{s}}$ | |----|--|----------------------------| | 52 | $erfc\left(\frac{a}{2\sqrt{t}}\right)$ | $\frac{e^{-a\sqrt{s}}}{s}$ | ### **Fourier Transforms** | Technique | Equation | Solution | | |---|---|-------------------|--| | Fourier Series | A method to decompose a periodic signal into a sum of sine and cosine functions with different frequencies and amplitudes. Is particularly useful for analyzing arbitrary periodic signals. Was introduced by Joseph Fourier. Is widely used in fields such as electronics, signal processing, and quantum mechanics. | | | | Fourier Transform | A mathematical operation that transforms a signal from the time domain (t) to the frequency domain (f). Unlike the Fourier Series, the Fourier Transform can be applied to both periodic and non-periodic signals. Are widely used to solve differential equations. | | | | | Time (Seconds) | Frequency (Hertz) | | | Fourier Transform
Equation | $\mathcal{F}\{f(t)\} = \hat{f}(\omega) = \int\limits_{-\infty}^{\infty} f(t) \ e^{-i\omega t} \ dt$ where $ \qquad \qquad \bullet \qquad f(t) \text{ must be defined on } -\infty \leq t \leq \infty $ $ \qquad \bullet \qquad \omega \text{ is an arbitrary real variable where } \omega = 2\pi f $ $ \qquad \bullet \qquad \text{The improper integral must converge} $ | | | | Inverse Fourier Transform
Equation | $\mathcal{F}^{-1}\big\{\hat{f}(\omega)\big\} = f(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \hat{f}(\omega) \ e^{i\omega t} \ d\omega$ where $ \qquad $ | | | | Example | $f(t) = \begin{cases} e^{-at} & for \ t > 0 \\ 0 & for \ t < 0 \end{cases}$ $\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = \int_{0}^{\infty} e^{-at} e^{-it\omega} dt = \frac{1}{a + i\omega}$ | | | | Using Fourier Transforms
to Solve a DiffEq | Solves ODEs for linear differential equations with constant coefficients. 1. Apply the Fourier transform to each term in the ODE. 2. Solve the resulting algebraic equation for the transformed function $\hat{f}(\omega)$. 3. Apply the inverse Fourier transform to find the solution. | | | # Table of Fourier Transforms (a,b>0) | # | f(x) | $\mathcal{F}{f(t)} = \hat{f}(\omega)$ | |----|-------------------------|--| | 1 | a f(x) + b g(x) | $a\hat{f}(\omega) + b\hat{g}(\omega)$ | | 2 | f(x-a) | $e^{-ia\omega}\hat{f}(\omega)$ | | 3 | $f(x) e^{iax}$ | $\hat{f}(\omega - a)$ | | 4 | f(ax) | $\frac{\hat{f}(\omega - a)}{\frac{1}{ a }\hat{f}\left(\frac{\omega}{a}\right)}$ | | 5 | $\frac{d^n f(x)}{dx^n}$ | $(i\omega)^n \hat{f}(\omega)$ | | 6 | $x^n f(x)$ | $i^{n} \frac{d^{n} \hat{f}(\omega)}{d\omega^{n}}$ $\hat{f}(\omega) \hat{g}(\omega)$ | | 7 | $(f\circ g)(x)$ | $\hat{f}(\omega)\hat{g}(\omega)$ | | 8 | f(x) g(x) | $\frac{1}{2\pi} (f \circ g)(\omega)$ | | 9 | Real f(x) | $\hat{f}(-\omega) = \overline{\hat{f}(\omega)}$ | | 10 | Imaginary $f(x)$ | $\hat{f}(-\omega) = -\overline{\hat{f}(\omega)}$ | | 11 | $\overline{f(x)}$ | | | 12 | $f(x)\cos(ax)$ | $\frac{\hat{f}(-\omega)}{\hat{f}(\omega-a)+\hat{f}(\omega+a)}$ | | 13 | $f(x) \sin(ax)$ | $ \frac{\hat{f}(\omega - a) - \hat{f}(\omega + a)}{2i} $ 1 | | 14 | $e^{-ax}u(x)$ | $\frac{1}{a+i\omega}$ $2a$ | | 15 | $e^{-a x }$ | $\frac{2a}{a^2 + \omega^2}$ | | 16 | 1 | $2\pi\delta(\omega)$ | | 17 | $\delta(x)$ | 1 | | 18 | sin(ax) | $-i\pi(\delta(\omega-a)+\delta(\omega+a))$ | | 19 | cos(ax) | $\pi(\delta(\omega-a)+\delta(\omega+a))$ | | 20 | $sin(ax^2)$ | $\pi(\delta(\omega - a) + \delta(\omega + a))$ $-\sqrt{\frac{\pi}{a}}\cos\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right)$ | | 21 | $cos(ax^2)$ | $\sqrt{\frac{\pi}{a}}\cos\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right)$ | | 22 | sech(ax) | $\frac{\pi}{a} sech\left(\frac{\pi}{2a}\omega\right)$ | | 23 | $e^{-\pi i \alpha x^2}$ | $ rac{1}{\sqrt{lpha}} e^{-i rac{\pi}{4}} e^{i rac{\omega^2}{2\pilpha}}$ | | 24 | x^n | $2\pi i^n \delta^{(n)}(\omega)$ | | 25 | $\delta^{(n)}(x)$ | $(i\omega)^n$ | | 26 | $\frac{1}{x}$ | $-i\pi sgn(\omega)$ | | 27 | $\frac{1}{x^n}$ | $-i\pi \frac{(-i\omega)^{n-1}}{(n-1)!} sgn(\omega)$ | | 28 | $\frac{1}{\sqrt{ x }}$ | $\frac{\sqrt{2\pi}}{\sqrt{ \omega }}$ | #### Sources - Dawkins, Paul (2004). Table of Laplace Transforms. https://tutorial.math.lamar.edu/classes/de/Laplace Table.aspx - Furius Enterprises (2010). Differential Equations Cheat sheet 2nd-order Homogeneous. https://furius.ca/cqfpub/doc/diffequs/diffequs.pdf - Shapiro, B.E. (2014). Table of Laplace Transforms. https://www.integral-table.com/downloads/LaplaceTable.pdf - Wikipedia (2025). Tables of important Fourier transforms. https://en.wikipedia.org/wiki/Fourier transform#Tables of important Fourier transforms #### See Also - o Harold's Partial Differential Equations (PDE) Cheat Sheet - o Harold's Differential Equation Models Cheat Sheet - o Harold's Euler's Method Example