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1.  Exponential Growth and Decay 
Observations: 

• Population (Exponential): A population of bacteria grows at a rate directly proportional to the current 
population size.   

• Finance: The more money you have invested the faster it grows. 
𝒅𝑷

𝒅𝒕
 ∝ 𝑷 

 
𝑑𝑃

𝑑𝑡
= 𝑘𝑃 

 
Separate variables and integrate: 
 

𝑑𝑃

𝑃
= 𝑘 𝑑𝑡 

 

∫
𝑑𝑃

𝑃
 = ∫ 𝑘 𝑑𝑡 

 
ln|𝑃| = 𝑘𝑡 + 𝑐 

 
Solve for 𝑃(𝑡): 

𝑒ln|𝑃| =  𝑒𝑘𝑡+𝑐 
 

|𝑃| =  𝑒𝑐  𝑒𝑘𝑡 = 𝐶𝑒𝑘𝑡 
 
At 𝑡 = 0 (initial condition): 
 

𝑃(0) = 𝐶𝑒𝑘∗0 = 𝐶 ∗ 1 = 𝐶 = 𝑃0 
 
Therefore: 
For Population: 

𝑷(𝒕) = 𝑷𝟎𝒆𝒌𝒕 
 
For Finance: 

𝐴 = 𝑃𝑒𝑟𝑡 
 

Let: 
• 𝑑𝑃/𝑑𝑡:  The instantaneous rate of change of 𝑃 over 

time. 
• ∝:  Symbol for “is proportional to”. 
• 𝑃:  The quantity whose rate of change is being 

considered.  Population, principle. 
 

 
  

Grows exponentially if 𝑘 is positive (𝑘 > 0). 
Decays exponentially if 𝑘 is negative (𝑘 < 0). 
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2.  Newton’s Law of Cooling 
Observation: 

• The rate at which an object cools or heats is directly proportional to the temperature difference between 
the object and its surroundings. 

𝒅𝑻

𝒅𝒕
 ∝ 𝚫𝑻 

 
𝑑𝑇

𝑑𝑡
 ∝ 𝑇𝑎 − 𝑇 

 
𝑑𝑇

𝑑𝑡
= 𝑘(𝑇𝑎 − 𝑇) 

 
𝑑𝑇

𝑑𝑡
= −𝑘(𝑇 − 𝑇𝑎) 

 
Separate variables: 

𝑑𝑇

(𝑇 − 𝑇𝑎)
= −𝑘 𝑑𝑡 

 
Integrate both sides: 

∫
1

(𝑇 − 𝑇𝑎)
𝑑𝑇  = ∫ −𝑘 𝑑𝑡 

 
𝑙𝑛(𝑇 − 𝑇𝑎) = −𝑘𝑡 − 𝑐 

 
Solve for 𝑇(𝑡): 

𝑒𝑙𝑛(𝑇−𝑇𝑎) =  𝑒−𝑘𝑡−𝑐 
 

𝑇 − 𝑇𝑎 =  𝑒−𝑐  𝑒−𝑘𝑡 = −𝐶𝑒−𝑘𝑡 
 

𝑇(𝑡) = 𝑇𝑎 − 𝐶𝑒−𝑘𝑡 
 
At 𝑡 = 0 (initial condition): 

𝑇(0) = 𝑇𝑎 − 𝐶 =  𝑇0 
 

𝐶 =  𝑇𝑎 − 𝑇0 
Therefore: 

𝑻(𝒕) = 𝑻𝒂 + (𝑻𝒂 − 𝑻𝟎)𝒆−𝒌𝒕  
 

Let: 
• 𝑇(𝑡): Represents the temperature of the 

object at time 𝑡. 
• 𝑇𝑎: Represents the constant ambient 

temperature of the surroundings. 
• 𝑇0: Represents the initial temperature of the 

object. 
• 𝑘: Represents a positive constant, often 

referred to as the cooling constant, which 
depends on the properties of the object and 
the surrounding medium. 

 

 
 
The solution shows that the object's temperature 
𝑇(𝑡) approaches the ambient temperature 𝑇𝑎 
exponentially over time. 
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3.  Doomsday Differential Equation 
Observation: 

• Population (Logistic): The "doomsday differential equation," or "doomsday-extinction model," is a 
differential equation that models population growth.  It can lead to either population extinction or a finite 
"doomsday" time where the population explodes to infinity. 

𝒅𝑷

𝒅𝒕
 ∝ 𝑷(𝑴 − 𝑷) 

 
𝑑𝑃

𝑑𝑡
= 𝑘𝑃(𝑀 − 𝑃) 

Separate variables: 
𝑑𝑃

𝑃(𝑀 − 𝑃)
= 𝑘 𝑑𝑡 

 
Partial fraction decomposition: 

1

𝑃(𝑀 − 𝑃)
=

1
𝑀
𝑃

+

1
𝑀

𝑀 − 𝑃
 

 
Substitute back in and multiply both sides by 𝑀: 

1

𝑃
𝑑𝑃 +

1

𝑀 − 𝑃
𝑑𝑃 = 𝑘𝑀 𝑑𝑡 

 
Integrate both sides: 

∫
1

𝑃
𝑑𝑃 + ∫

1

𝑀 − 𝑃
𝑑𝑃  = ∫ 𝑘𝑀 𝑑𝑡 

 
𝑙𝑛 |𝑃| − 𝑙𝑛 |𝑀 − 𝑃| = 𝑘𝑀𝑡 + 𝑐 

 

𝑙𝑛 (
𝑃

𝑀 − 𝑃
) = 𝑘𝑀𝑡 + 𝑐  

Solve for 𝑃(𝑡): 

𝑒
𝑙𝑛(

𝑃
𝑀−𝑃

)
=  𝑒𝑘𝑀𝑡+𝑐 

𝑃

𝑀 − 𝑃
=  𝑒𝑐  𝑒𝑘𝑀𝑡 = 𝐶𝑒𝑘𝑀𝑡 

 
Several algebra steps later: 

𝑃(𝑡) =
𝑀𝐶

1 + 𝐶𝑒−𝑘𝑀𝑡
 

At 𝑡 = 0 (initial condition): 

𝑃(0) = 𝑃0     ⟶     𝐶 =  
𝑃0

𝑀 − 𝑃0
 

 
Replacing 𝐶 and more algebra steps give: 
 

𝑷(𝒕) =
𝑴

𝟏 + (
𝑴 − 𝑷𝟎

𝑷𝟎
) 𝒆−𝒌𝑴𝒕

  

 

Let: 
• 𝑃(𝑡) represents the population size at time 𝑡. 
• 𝑘 is a positive constant related to the growth 

rate (𝑘 > 0). 
• 𝑀 is a constant representing a carrying 

capacity or a threshold. 
 

 
Doomsday vs. Extinction: 
• Extinction: If the initial population 𝑃(0) = 𝑃0 is 

less than 𝑀, the population will decline over time 
and eventually approach zero (extinction). 
 

• Doomsday: If the initial population 𝑃(0) = 𝑃0 is 
greater than 𝑀, the population will initially grow, 
but it will eventually reach a point where it 
explodes to infinity in a finite amount of time 
(doomsday). 

 
If 𝑃0 > 𝑀  

𝑡𝑑𝑜𝑜𝑚𝑠𝑑𝑎𝑦 = (
1

𝑘𝑀
) ln (

𝑃0

𝑃0 − 𝑀
) 
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4.  Drug Concentration in Body 
Observation: 

• The absorption of medicine into the body can be modeled using differential equations that describe how 
the concentration of the drug changes over time. A first-order absorption model assumes the rate of 
absorption is proportional to the amount of drug available at the absorption site (e.g., in the 
gastrointestinal tract (GI)). 

1.  Absorption Phase by the GI Track: 
The drug leaves the absorption site at a rate proportional 
to how much is left there. 
 

𝒅𝑨(𝒕)

𝒅𝒕
 ∝ 𝑨(𝒕) 

 
𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘𝑎𝐴(𝑡) 

 

𝐴(𝑡) = 𝐷𝑒−𝑘𝑎𝑡 
 
2.  Entry into Bloodstream: 
The drug concentration in the bloodstream increases due 
to absorption and decreases due to elimination. 
 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 − 𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 

 
𝒅𝑪(𝒕)

𝒅𝒕
= 𝒌𝒂𝑨(𝒕) − 𝒌𝒆𝑪(𝒕) 

 
Substitute 𝐴(𝑡) into the 𝐶(𝑡) differential equation: 
 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑘𝑎𝐷𝑒−𝑘𝑎𝑡 − 𝑘𝑒𝐶(𝑡) 

 
Solving for 𝐶(𝑡) (see next page) gives the solution for the 
amount of drug in the bloodstream over time: 
 
Multiple Oral Doses Model: 

𝑪(𝒕) =
𝒌𝒂𝑫

𝒌𝒆 − 𝒌𝒂
(𝒆−𝒌𝒂𝒕 − 𝒆−𝒌𝒆𝒕) + 𝑪𝟎𝒆−𝒌𝒆𝒕 

 
Single Oral Dose Model: 

𝐴(0) = 𝐷 
𝐶(0) = 𝐶0 = 0 

 

𝐶(𝑡) =
𝑘𝑎𝐷

𝑘𝑒 − 𝑘𝑎
(𝑒−𝑘𝑎𝑡 − 𝑒−𝑘𝑒𝑡) 

Let: 
• 𝐴(𝑡): Amount of drug at the absorption site 

at time 𝑡 
• 𝐶(𝑡): Amount of drug (concentration) in the 

bloodstream at time 𝑡 
• 𝐶0 : Existing concentration before next dose 
• 𝑡 : Time in hours 
• 𝐷: Dose of the drug in milligrams 
• 𝑘𝑎: Constant absorption rate of the drug 
• 𝑘𝑒: Constant elimination rate of the drug 

 
 

 
Interpretation: 

• The first term is from absorption of the new 
dose. 

• The second term is the decay of the existing 
concentration 𝐶0 due to elimination. 

• If 𝐶0 = 0, we get the standard single-dose 
equation. 
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Solution: 
Differential equation: 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑘𝑎𝐷𝑒−𝑘𝑎𝑡 − 𝑘𝑒𝐶(𝑡) 

 
Move all C(t) variables to the left side: 

𝑑𝐶(𝑡)

𝑑𝑡
+ 𝑘𝑒𝐶(𝑡) = 𝑘𝑎𝐷𝑒−𝑘𝑎𝑡 

 

Multiply both sides by the integrating factor, 𝑒𝑘𝑒𝑡: 

𝑒𝑘𝑒𝑡
𝑑𝐶(𝑡)

𝑑𝑡
+ 𝑘𝑒𝑒𝑘𝑒𝑡𝐶(𝑡) = 𝑘𝑎𝐷𝑒(𝑘𝑒−𝑘𝑎)𝑡 

 
The left-hand side is the product rule derivative of: 

𝑑

𝑑𝑡
(𝑒𝑘𝑒𝑡𝐶(𝑡)) = 𝑘𝑎𝐷𝑒(𝑘𝑒−𝑘𝑎)𝑡 

 
Integrate: 

∫
𝑑

𝑑𝑡
[𝑒𝑘𝑒𝑡𝐶(𝑡)] 𝑑𝑡 = ∫ 𝑘𝑎𝐷𝑒(𝑘𝑒−𝑘𝑎)𝑡𝑑𝑡 

 

𝑒𝑘𝑒𝑡𝐶(𝑡) = 𝑘𝑎𝐷 ∫ 𝑒(𝑘𝑒−𝑘𝑎)𝑡 𝑑𝑡 + 𝐾 

 
Assume 𝑘𝑎 ≠ 𝑘𝑒 to avoid division by zero (0): 

𝑒𝑘𝑒𝑡𝐶(𝑡) =
𝑘𝑎𝐷

𝑘𝑒 − 𝑘𝑎
𝑒(𝑘𝑒−𝑘𝑎)𝑡 + 𝐾 

 
Solve for 𝐶(𝑡): 

𝐶(𝑡) =
𝑘𝑎𝐷

𝑘𝑒 − 𝑘𝑎
𝑒−𝑘𝑎𝑡 + 𝐾𝑒−𝑘𝑒𝑡 

 
Apply initial condition 𝐶(0) = 𝐶0: 

𝐶0 =
𝑘𝑎𝐷

𝑘𝑒 − 𝑘𝑎
+ 𝐾 

 

𝐾 = 𝐶0 −
𝑘𝑎𝐷

𝑘𝑒 − 𝑘𝑎
 

Therefore: 

𝑪(𝒕) =
𝒌𝒂𝑫

𝒌𝒆 − 𝒌𝒂
(𝒆−𝒌𝒂𝒕 − 𝒆−𝒌𝒆𝒕) + 𝑪𝟎𝒆−𝒌𝒆𝒕 

 

 

 


