Harold's Finances Cheat Sheet

29 September 2024

Variables

Name	Variable Descriptions
Variables	$PV = ext{Original amount, principle, or present value}$ $FV = ext{Amount after time t, future value, or face value}$ $r = ext{Annual interest rate, rate of growth or loss } (15\% = 0.15)$ $k = ext{Number of periods or times per year (quarterly is } k = 4)$ $t = ext{Number of periods or compoundings } (n = kt)$ $i = ext{Effective interest rate per period } (i = \frac{r}{k})$ $x = ext{Number of payment already made}$ $e = ext{Euler's number } (\sim 2.71828 \ 18284 \ 59045 \dots)$ $PMT = R = ext{Equal regular payments towards a loan or }$ $Ext{Equal periodic payments from an annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{Remaining balance on a loan or annuity}$ $Ext{BAL} = ext{B} = ext{B}$

One-Time Investments

Simple Interest	Discrete	Continuous
Simple Interest	I = PVrt	
Future Value	FV = PV + I $FV = PV + PVrt$	
	FV = PV(1+rt)	
Present Value	$PV = \frac{FV}{(1+rt)}$	NA
	$PV = FV(1+rt)^{-1}$	
T-Bill	DIS = FVrt	
	Price = FV - DIS = FV(1 - rt)	
	Effective Rate = $\frac{DIS}{PVt} \bullet 100\%$	
Compounded Interest	Discrete	Continuous
Compounded Interest	$I = FV - PV$ $I = PV((1+r)^{t} - 1)$	$I = PV(e^{rt} - 1)$
Future Value	$I = PV((1+r)^{t} - 1)$ $FV = PV\left(1 + \frac{r}{k}\right)^{kt}$	$FV = PVe^{rt}$
	If $k = 1$ (annually) then	1, 1,0
	$FV = PV(1+r)^t$	

Present Value	$PV = \frac{FV}{\left(1 + \frac{r}{k}\right)^{kt}} = FV\left(1 + \frac{r}{k}\right)^{-kt}$ If $k = 1$ (annually) then $PV = \frac{FV}{(1+r)^t} = FV(1+r)^{-t}$	$PV = \frac{FV}{e^{rt}}$ $PV = FVe^{-rt}$
Annual Interest Rate	$r = k \left[\left(\frac{FV}{PV} \right)^{-kt} - 1 \right] \bullet 100 \%$	$r = \frac{1}{t} \ln \left(\frac{FV}{PV} \right)$
Annual Percentage Yield (APY) or Effective Interest Rate	$\% APY = \left[\left(1 + \frac{r}{k} \right)^{kt} - 1 \right] \bullet 100 \%$ $APY = r_E = \left(1 + \frac{r}{k} \right)^k - 1$	$i = ln\left(\frac{FV}{PV}\right)$

Regular Payments

Compounded Interest	Future Value	Present Value	
Number of Periods or Compoundings	n = kt		
Effective Interest Rate Per Period	$i = \frac{r}{k}$		
Cost of Loan (Amount You Paid)	$Total_{Paid} = ktPMT$		
Interest You Paid	$I_{Paid} = ktPMT - PV$		
Value of an Ordinary Annuity (PMT at end of period)	$FV = PMT \left[\frac{\left(\left(1 + \left(\frac{r}{k} \right) \right)^{kt} - 1 \right)}{\left(\frac{r}{k} \right)} \right]$	$PV = PMT \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt}\right)}{\left(\frac{r}{k}\right)} \right]$	
	$FV = PMT \left[\frac{((1+i)^n - 1)}{i} \right]$	$PV = PMT \left[\frac{(1 - (1 + i)^{-n})}{i} \right]$	
Value of an Annuity Due (PMT at beginning of period)	$FV = PMT \left \frac{\left(\left(1 + \left(\frac{r}{k} \right) \right) - 1 \right)}{\left(\frac{r}{k} \right)} \right - PMT$	$PV = PMT + PMT \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt+1}\right)}{\left(\frac{r}{k}\right)} \right]$	
	$FV = PMT \left[\frac{((1+i)^{n+1}-1)}{i} \right] - PMT$	$PV = PMT + PMT \left[\frac{(1 - (1 + i)^{-(n-1)})}{i} \right]$	
Amortization Payment Amount	$PMT = FV \left[\frac{\left(\left(1 + \left(\frac{r}{k} \right) \right)^{kt} - 1 \right)}{\left(\frac{r}{k} \right)} \right]^{-1}$	$PMT = PV \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt}\right)}{\left(\frac{r}{k}\right)} \right]^{-1}$	
	$PMT = FV \left[\frac{i}{((1+i)^n - 1)} \right]$	$PMT = PV \left[\frac{i}{(1 - (1 + i)^{-n})} \right]$	
Remaining Balance	NA	$BAL = PMT \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt + x}\right)}{\left(\frac{r}{k}\right)} \right]$	
	NA	$BAL = PMT \left[\frac{(1 - (1 + i)^{-(n-x)})}{i} \right]$	

Examples

Scenario	Calculations	
Savings Account: PV = \$100 r = 8% = 0.08 $t = 1 \ year$	If $k = 0$, $FV = \$100.00 (+0¢)$ Simple If $k = 1$, $FV = \$108.00 (+\$8)$ Annually If $k = 2$, $FV = \$108.16 (+16¢)$ Semiannually If $k = 4$, $FV = \$108.24 (+8¢)$ Quarterly If $k = 12$, $FV = \$108.30 (+6¢)$ Monthly If $k = 52$, $FV = \$108.32 (+2¢)$ Weekly If $k = 365$, $FV = \$108.33 (+1¢)$ Daily If $k \to \infty$, $FV = \$108.33 (+0¢)$ Continuously	
House Mortgage Payment: PV = \$300,000 (home loan) PMT = Equal periodic payments r = 3.5% = 0.035 k = 12 (monthly) t = 30 years	$PMT = PV \left[\frac{\binom{r}{k}}{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt}\right)} \right]$ $PMT = \$300,000 \left[\frac{\left(\frac{0.035}{12}\right)}{\left(1 - \left(1 + \left(\frac{0.035}{12}\right)\right)^{-(12)(30)}\right)} \right]$ $PMT = \$1,347.13/month$	
Loan Cost Analysis	t = 30 years: Cost of loan = $ktPMT = (12)(30)($1,347.13) = $484,966.80$ Interest paid = $ktPMT - PV = $484,966.80 - $300,000 = $184,966.80$ $t = 15 years:$ Cost of loan = $ktPMT = (12)(15)($2,144.65) = $386,037.00$ Interest paid = $ktPMT - PV = $386,037.00 - $300,000 = $86,037.00$	
Rule of 72	How long to double your money at a given interest rate r . $FV = 2PV = PVe^{rt}$ $e^{rt} = 2$ $rt = \ln 2 = 0.693 \cong 0.72$ $t \cong \frac{0.72}{r}$ $If \ r = 4\% \ then \ t \cong \frac{72}{4} = 18 \ years$ $Actual: \ t = \frac{\ln 2}{0.04} = 17.325 \ years \cong 17 \ years 4 \ months$	