Harold's Geometry – Circle Theorems Cheat Sheet 1 September 2025 ## **Terminology** # Arcs and Angles in a Circle | Configuration | Rule / Formula | Diagram | |---|--|------------------------| | Central Angle
(Angle at Center) | Equal to arc $\theta = x^{\circ}$ $m \angle ABC = m\widehat{AC}$ | x° x° | | Inscribed Angle
(Angle in Same
Segment) | Half the arc $ heta= rac{1}{2}x^{\circ}$ | $\frac{1}{2}x^{\circ}$ | | Inscribed Quadrilateral (Opposite Angles of Cyclic Quadrilateral) | $m \angle A + m \angle C = 180^{\circ}$
$m \angle B + m \angle D = 180^{\circ}$
The opposite angles of cyclic quadrilaterals are supplementary (180°). | | | Radius 1 Tangent | The angle between the radius and a tangent is 90°. | 0 | | Two Chords
(Internal Angle) | Half the sum $\theta = \frac{1}{2}(x^{\circ} + y^{\circ})$ | $\frac{1}{2}(x^{\circ}+y^{\circ})$ | |--------------------------------------|---|---| | Two Secants
(External Angle) | Half the difference $\theta = \frac{1}{2}(x^{\circ} - y^{\circ})$ $m \angle D = \frac{1}{2}(m\widehat{EF} - m\widehat{GH})$ | x° y° E D H E F | | Secant & Tangent
(External Angle) | $m \angle Q = \frac{1}{2} (m\widehat{RS} - m\widehat{RT})$ | Q T S | | Two Tangents
(External Angle) | $m \angle L = \frac{1}{2} (m \widehat{MPN} - m \widehat{MN})$ | L. M | | Angle at Center | $2x^{\circ}vs.x^{\circ}$ The angle at the center is twice the angle standing on the same chord/arc. | 2x x | |---|---|------| | Angles Inscribed in a
Semi-Circle | Right Angles
(90°)
Angles on a semi-circle
are 90°. | 0 | | Angles Inscribed in a
Circle | Angles from two points
on a circle are equal. | | | Same Segment Theorem (Two Inscribed Angles) | $x^\circ = x^\circ$ $y^\circ = y^\circ$ Angles on the same arc are equal. | | | Alternate Segment
Theorem | $x^\circ = x^\circ$ $y^\circ = y^\circ$ The angle between a chord and a tangent is equal to the angle in the alternate segment. | | | Tangent and
Intersected Chord
Theorem | $m \angle 1 = \frac{1}{2} (m\widehat{AC})$
$m \angle 2 = \frac{1}{2} (m\widehat{ADC})$
If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc. | $ \begin{array}{c} C \\ 2 \\ A \end{array} $ | |---|---|--| | Supplimentary Angles | <i>m</i> ∠1 + <i>m</i> ∠2 = 180° | A 2 C | | Interior Angles | $\theta = \frac{360^{\circ}}{n}$ Sum of interior angles of a circle is always 360°. | | #### **Chords and Secants in a Circle** | Configuration | Rule / Formula | Diagram | |---|--|-------------| | Perpendicular Bisector
of Chord Passes Through
Center | The line from the center of a circle to the center of a chord is perpendicular to the chord. A perpendicular line from the chord to the center bisects the chord. | 0. | | Equal Chords Equidistant
from Center | Equal chords are equal distance from the center. Chords that are equal distance from the center are equal. | C $AB = CD$ | | Equal Arcs, Equal Chords | Equal arc/chord subtend equal angles at the center. Equal angles stand on an equal arc/chord. | | | Tangents from External
Point | Tangent segments
drawn from an
external point are
equal. | Tangents | | Intersecting Chords
Theorem | $a \cdot b = c \cdot d$ | | |---|---------------------------------|-------| | Intersecting Secants Theorem | $a \cdot (a+b) = c \cdot (c+d)$ | b d d | | Intersecting Secant-
Tangent Theorem | $a(a+b)=c^2$ | b a | #### **Area and Perimeter** | Configuration | Rule / Formula | Diagram | |---------------------------|---|---------------| | Radius Diameter | r The distance from the center or origin to a point on the circle. $d=2r$ $\mathcal{C}=2\pi r$ | Circumfe ence | | Circumference | $C = \pi d$ | | | Area of Circle | $A = \pi r^2$ | radius | | Area of a Sector | $A = \left(\frac{\theta^{\circ}}{360^{\circ}}\right) \cdot \pi r^{2}$ $where \left(\frac{\theta^{\circ}}{360^{\circ}}\right)$ $= \frac{area\ of\ sector}{area\ of\ circle}$ | 8 | | Surface Area of
Sphere | $SA = 4\pi r^2$ | | | Volume of Sphere | $V = \frac{4}{3}\pi r^3$ | | #### Sources - Kevin's Online Maths, Rules of Circle Geometry, http://kelvinsonlinemaths.blogspot.com/2011/03/rules-of-circle-geometry.html - Geometry R, Unit 13 Circles, Mr. Ross @ Grady High, https://mrrossatgradyhigh.files.wordpress.com/2022/08/unit-13-notes-circles_2018.pdf - Pinterest, Tangent & Secant Lines, Sandy Lakey, https://www.pinterest.com.mx/pin/817403401103649163/ - Online Math Learning.com, Angles and Intercepted Arcs, <u>https://www.onlinemathlearning.com/arc-angles.html</u> - ck-12, 9.7 Segments of Secants and Tangents, https://www.ck12.org/book/ck-12-foundation-and-leadership-public-schools-college-access-reader%3a-geometry/section/9.7/ - o ck-12, Angles Outside a Circle, https://www.ck12.org/c/geometry/angles-outside-a-circle/lesson/Angles-Outside-a-Circle-BSC-GEOM/ - Tiger Moon (2025). GCSE Maths Circle Theorems A2 poster. https://www.tigermoon.co.uk/collections/maths-gcse-posters/products/circle-theorems-maths-poster