### Harold's Geometry – Circle Theorems Cheat Sheet

1 September 2025

## **Terminology**



# Arcs and Angles in a Circle

| Configuration                                                     | Rule / Formula                                                                                                                                               | Diagram                |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Central Angle<br>(Angle at Center)                                | Equal to arc $\theta = x^{\circ}$ $m \angle ABC = m\widehat{AC}$                                                                                             | x° x°                  |
| Inscribed Angle<br>(Angle in Same<br>Segment)                     | Half the arc $	heta=rac{1}{2}x^{\circ}$                                                                                                                     | $\frac{1}{2}x^{\circ}$ |
| Inscribed Quadrilateral (Opposite Angles of Cyclic Quadrilateral) | $m \angle A + m \angle C = 180^{\circ}$<br>$m \angle B + m \angle D = 180^{\circ}$<br>The opposite angles of cyclic quadrilaterals are supplementary (180°). |                        |
| Radius 1 Tangent                                                  | The angle between the radius and a tangent is 90°.                                                                                                           | 0                      |

| Two Chords<br>(Internal Angle)       | Half the sum $\theta = \frac{1}{2}(x^{\circ} + y^{\circ})$                                                                  | $\frac{1}{2}(x^{\circ}+y^{\circ})$          |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Two Secants<br>(External Angle)      | Half the difference $\theta = \frac{1}{2}(x^{\circ} - y^{\circ})$ $m \angle D = \frac{1}{2}(m\widehat{EF} - m\widehat{GH})$ | $x^{\circ}$ $y^{\circ}$ $E$ $D$ $H$ $E$ $F$ |
| Secant & Tangent<br>(External Angle) | $m \angle Q = \frac{1}{2} (m\widehat{RS} - m\widehat{RT})$                                                                  | Q $T$ $S$                                   |
| Two Tangents<br>(External Angle)     | $m \angle L = \frac{1}{2} (m \widehat{MPN} - m \widehat{MN})$                                                               | L. M                                        |

| Angle at Center                             | $2x^{\circ}vs.x^{\circ}$ The angle at the center is twice the angle standing on the same chord/arc.                             | 2x x |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| Angles Inscribed in a<br>Semi-Circle        | Right Angles<br>(90°)<br>Angles on a semi-circle<br>are 90°.                                                                    | 0    |
| Angles Inscribed in a<br>Circle             | Angles from two points<br>on a circle are equal.                                                                                |      |
| Same Segment Theorem (Two Inscribed Angles) | $x^\circ = x^\circ$ $y^\circ = y^\circ$ Angles on the same arc are equal.                                                       |      |
| Alternate Segment<br>Theorem                | $x^\circ = x^\circ$ $y^\circ = y^\circ$ The angle between a chord and a tangent is equal to the angle in the alternate segment. |      |

| Tangent and<br>Intersected Chord<br>Theorem | $m \angle 1 = \frac{1}{2} (m\widehat{AC})$<br>$m \angle 2 = \frac{1}{2} (m\widehat{ADC})$<br>If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc. | $ \begin{array}{c} C \\ 2 \\ A \end{array} $ |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Supplimentary Angles                        | <i>m</i> ∠1 + <i>m</i> ∠2 = 180°                                                                                                                                                                                                              | A 2 C                                        |
| Interior Angles                             | $\theta = \frac{360^{\circ}}{n}$ Sum of interior angles of a circle is always 360°.                                                                                                                                                           |                                              |

#### **Chords and Secants in a Circle**

| Configuration                                               | Rule / Formula                                                                                                                                                     | Diagram     |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Perpendicular Bisector<br>of Chord Passes Through<br>Center | The line from the center of a circle to the center of a chord is perpendicular to the chord.  A perpendicular line from the chord to the center bisects the chord. | 0.          |
| Equal Chords Equidistant<br>from Center                     | Equal chords are equal distance from the center.  Chords that are equal distance from the center are equal.                                                        | C $AB = CD$ |
| Equal Arcs, Equal Chords                                    | Equal arc/chord subtend equal angles at the center.  Equal angles stand on an equal arc/chord.                                                                     |             |
| Tangents from External<br>Point                             | Tangent segments<br>drawn from an<br>external point are<br>equal.                                                                                                  | Tangents    |

| Intersecting Chords<br>Theorem          | $a \cdot b = c \cdot d$         |       |
|-----------------------------------------|---------------------------------|-------|
| Intersecting Secants Theorem            | $a \cdot (a+b) = c \cdot (c+d)$ | b d d |
| Intersecting Secant-<br>Tangent Theorem | $a(a+b)=c^2$                    | b a   |

#### **Area and Perimeter**

| Configuration             | Rule / Formula                                                                                                                                                              | Diagram       |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Radius  Diameter          | $r$ The distance from the center or origin to a point on the circle. $d=2r$ $\mathcal{C}=2\pi r$                                                                            | Circumfe ence |
| Circumference             | $C = \pi d$                                                                                                                                                                 |               |
| Area of Circle            | $A = \pi r^2$                                                                                                                                                               | radius        |
| Area of a Sector          | $A = \left(\frac{\theta^{\circ}}{360^{\circ}}\right) \cdot \pi r^{2}$ $where \left(\frac{\theta^{\circ}}{360^{\circ}}\right)$ $= \frac{area\ of\ sector}{area\ of\ circle}$ | 8             |
| Surface Area of<br>Sphere | $SA = 4\pi r^2$                                                                                                                                                             |               |
| Volume of Sphere          | $V = \frac{4}{3}\pi r^3$                                                                                                                                                    |               |



#### Sources

- Kevin's Online Maths, Rules of Circle Geometry, http://kelvinsonlinemaths.blogspot.com/2011/03/rules-of-circle-geometry.html
- Geometry R, Unit 13 Circles, Mr. Ross @ Grady High, https://mrrossatgradyhigh.files.wordpress.com/2022/08/unit-13-notes-circles\_2018.pdf
- Pinterest, Tangent & Secant Lines, Sandy Lakey, <a href="https://www.pinterest.com.mx/pin/817403401103649163/">https://www.pinterest.com.mx/pin/817403401103649163/</a>
- Online Math Learning.com, Angles and Intercepted Arcs, <u>https://www.onlinemathlearning.com/arc-angles.html</u>
  - ck-12, 9.7 Segments of Secants and Tangents, <a href="https://www.ck12.org/book/ck-12-foundation-and-leadership-public-schools-college-access-reader%3a-geometry/section/9.7/">https://www.ck12.org/book/ck-12-foundation-and-leadership-public-schools-college-access-reader%3a-geometry/section/9.7/</a>
  - o ck-12, Angles Outside a Circle, <a href="https://www.ck12.org/c/geometry/angles-outside-a-circle/lesson/Angles-Outside-a-Circle-BSC-GEOM/">https://www.ck12.org/c/geometry/angles-outside-a-circle/lesson/Angles-Outside-a-Circle-BSC-GEOM/</a>
- Tiger Moon (2025). GCSE Maths Circle Theorems A2 poster.
   <a href="https://www.tigermoon.co.uk/collections/maths-gcse-posters/products/circle-theorems-maths-poster">https://www.tigermoon.co.uk/collections/maths-gcse-posters/products/circle-theorems-maths-poster</a>