Harold's High School Chemistry Cheat Sheet

25 August 2025

Chapter 1: Measuring Up

Term		Descripti	on		Equation	
Rulers	When usin	When using a ruler that is marked off in 16 th s of an inch, report your answers to				
Kuleis		a hundredth of an inch.				
		The unit of measurement is just as important as the number. You must always list the units, followed by the compound!				
Units		You must a	•		y the compoun	d!
	4 411	Example: 6.28 mL H ₂ O 1. All non-zero figures (1, 2, 3, 4, 5, 6, 7, 8, and 9) are significant.				
		_			_	
Significant Figures			ficant if it is bet	_	-	ltathariaht
		decimal po	_	at the end of t	he number <i>and</i>	to the right
				easurements v	ou must report	vour
		_	_		se number in th	•
			•		you must repo	•
Using SigFigs			-		ures as the mea	•
			est significant fi	-		
	3. There	is always so	ome <u>error</u> in th	e last significan	t figure of a me	asurement.
Precision vs.	• Precis					
Accuracy		decimal places).				
Accuracy	Accuracy: How close a measurement is to the <u>true</u> or accepted value.					
		Prefix	Abbreviation			
		giga	G	1,000,000,0		_
		mega	M	1,000,000		_
		kilo	k	1,000	10 ³	_
Prefixes		hector	Н	100	10 ²	-
		deca	Da	0.01	10 ⁻²	_
		centi milli	c m	0.001	10 ⁻³	-
		micro	μ	0.000001		╡
		nano	n n	0.0000000		-
Scientific Notation	14.000.0		$10^7 = 1.4E7$	$0.00000014 = 1.4 \times 10^{-7} = 1.4E-7$		= 1.4F-7
		Volume (0.00000	1 cm ³ = 1 mL	
		Mass (g)	-	weig		vitv
Measuring				weight = mass × gravity mass m		m
		Density (,	0)	density	$={volume}$ or	$\rho = \frac{1}{V}$
			0.1436	$mL = ? m^3$		
Unit Conversion		1		. a l	,, , <u>,,</u> ,	
(Train Track	143.6	_ 10	000 mL	1 cm ³	, ,	0.1436 m ³
Method)	1 L 1 mL (100 cm) ³					
-						

Chapter 2: What's The Matter

Term	Description	Equation

Chapter 3: Making Sense of Atoms and Elements

Term	Description	Equation

Chapter 4: The Modern View of Atoms and Their Chemistry

Term	Description	Equation

Chapter 5: Covalent Compounds and Their Molecular Geometry

Term	Description	Equation

Chapter 6: Physical and Chemical Changes

Term	Description	Equation

Chapter 7: Stoichiometry

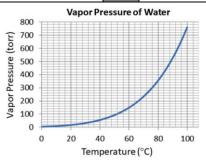
Term	Description	Equation

Chapter 8: Still More on Stoichiometry

Common Polyatomic Ions (Memorize)

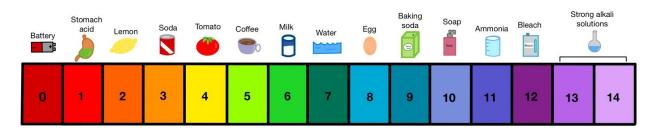
#	Name	lon
1	Ammonium	NH_4^+
2	Hydronium	H_3O^+
3	Acetate	$C_2H_3O_2^-$
4	Cyanide	CN-
5	Bicarbonate	HCO_3^-
6	Carbonate	CO_3^{2-}
7	Hydroxide	OH-
8	Nitrite	NO_2^-
9	Nitrate	NO_3^-
10	Sulfite	SO_3^{2-}
11	Sulfate	SO_4^{2-}
12	Phosphate	PO_4^{3-}
13	Chlorite	ClO_2^-
14	Manganate	MnO_4^{2-}

Chapter 9: Chemists Have Solutions


Term	Descri	Equa	tion	
Dissolving Compounds	 When <u>ionic</u> compounds dissolve, they split up into their individual <u>atoms</u>. When polar <u>covalent</u> compounds dissolve, they split up into their individual <u>molecules</u>. 			
	State	Temperature	Pressure	
Solubility of Solutes	Solid	<u> </u>	-	
,	Liquid	-	-	
	Gas	Ţ	<u> </u>	
Concentration	The behavior of a chemical often depends on concentration.			ration.
Molarity	$Molarity = \frac{moles\ of\ solute}{liters\ of\ solution}\ M$ Liters			rs
Molality	$Molality = \frac{moles\ of\ solute}{kilograms\ of\ solvent}\ m$ Kilograms		ams	
Freezing Point Depression	$\Delta T = -i \cdot K_f \cdot m$		$K_{f_H_2O} = 1$.86 <i>°C/m</i>
Boiling Point Elevation	$\Delta T = i$	$K_{f_{-}H_{2}O} = 1$ $K_{b_{-}H_{2}O} = 0.$	512 °C/m	

Chapter 10: It's a Gas!

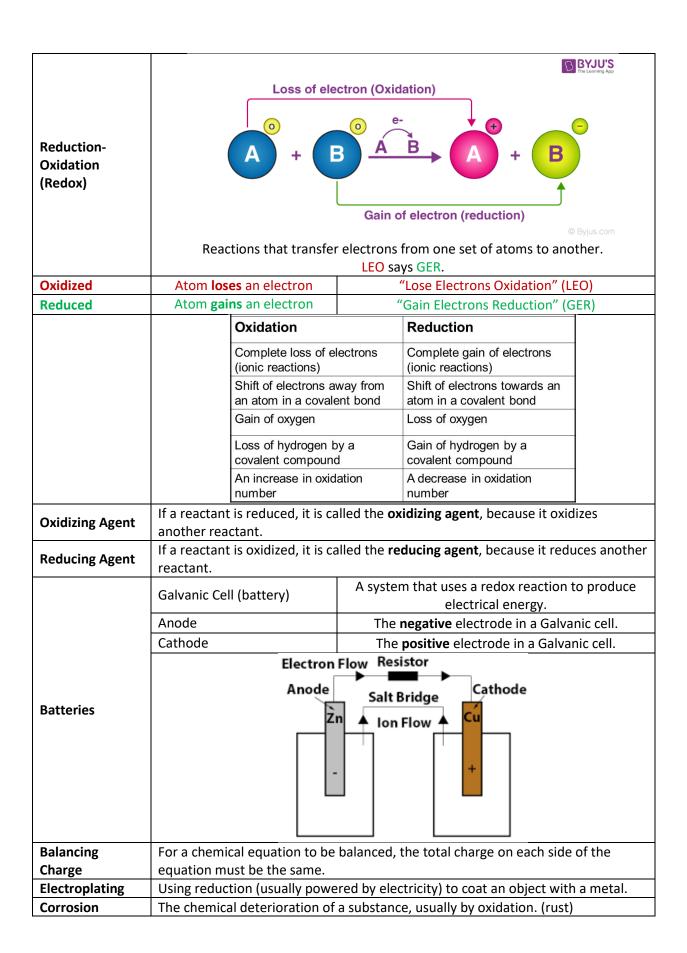
Term	Equation	Note	
Ideal Gas Law	PV = nRT	$P = Pressure (atm)$ $V = Volume (L)$ $n = \# Moles of gas$ Ideal Gas Constant (R): $R = 0.0821 \frac{L \ atm}{mole \ K}$ $T = Temperature (K)$	
Boyle's Law	$P_1V_1 = P_2V_2$	Assumes $T = constant$	
Charle's Law	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	Assumes $P = constant$	
Combined Gas Law	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	Since $nR = constant$	
Avagadro's Law	$n = \frac{PV}{RT}$	Same number of molecules or atoms	
Volumes of Gases	$V = \frac{RT}{P}$	Relationship between volumes of those gases	
Kelvin (T)	$K = {^{\circ}C} + 273.15$ $0 K = Absolute Zero$	${}^{\circ}F = \left(\frac{9}{5}\right) {}^{\circ}C + 32 \qquad [32^{\circ} - 212^{\circ}]$ ${}^{\circ}C = \left(\frac{5}{9}\right) ({}^{\circ}F - 32) \qquad [0^{\circ} - 100^{\circ}]$ $Pressure = \frac{Force}{Area}$	
Pressure (P)	$P = \frac{F}{A}$ $1 \text{ atm} = 760 \text{ torr}$ $1 \text{ torr} = 1 \text{ mmHg}$ $1 \text{ mmHg} = 133.322 \text{ Pa}$ $1 \text{ atm} = 101.325 \text{ Pascals (Pa)}$	$Pressure = \frac{Force}{Area}$ Units can be torr, atm, or Pa	
Ideal Gas	 a. The molecules or atoms that make up the gas occupy no volume. b. The molecules or atoms that make up the gas are not attracted to each other. c. The collisions that occur between the molecules or atoms that make up the gas are elastic, which means no energy is lost in such a collision. This is also true for any collisions between the molecules or atoms that make up the gas and the walls of the container in which the gas is held. 		
STP	A gas is at STP if its pressure is 1 atm and its temperature is $0^{\circ}C$.	Standard Temperature and Pressure	
Dalton's Law	$P_{total} = P_a + P_b + P_c + \cdots$	Partial pressures	
Mole Fraction	$P_{total} = P_a + P_b + P_c + \cdots$ $X_a = \frac{P_a}{P_{total}}$	$X_a = \frac{\text{moles of compound a}}{\text{total moles in the mixture}}$	
Vapor Pressure	Boiling point = The temperature at which a liquid's vapor pressure is equal to the external air pressure.		
Extrapolation	Extending a trend in data to situations for which no measurements have been made. Usually linear approximations.		


Vapor Pressure of Water

Temperature	Vapor Pressure	Temperature	Vapor Pressure
(°C)	(torr)	(°C)	(torr)
0	4.6	39	52.4
2	5.3	40	55.3
4	6.1	42	61.5
6	7.0	44	68.3
8	8.0	46	75.5
10	9.2	48	83.7
12	10.5	50	92.5
14	12.0	52	102.1
15	12.8	54	112.5
16	13.6	56	123.8
17	14.5	58	136.1
18	15.5	60	149.4
19	16.5	62	163.8
20	17.5	64	179.3
21	18.7	66	196.1
22	19.8	68	214.2
23	21.1	70	233.7
24	22.4	72	254.6
25	23.8	74	277.2
26	25.2	76	301.4
27	26.7	78	327.3
28	28.3	80	355.1
29	30.0	82	384.9
30	31.8	84	416.8
31	33.7	86	450.9
32	35.7	88	487.1
33	37.7	90	525.8
34	39.9	92	567.0
35	42.2	94	610.9
36	44.6	96	657.6
37	47.1	98	707.3
	49.7	100	760.0

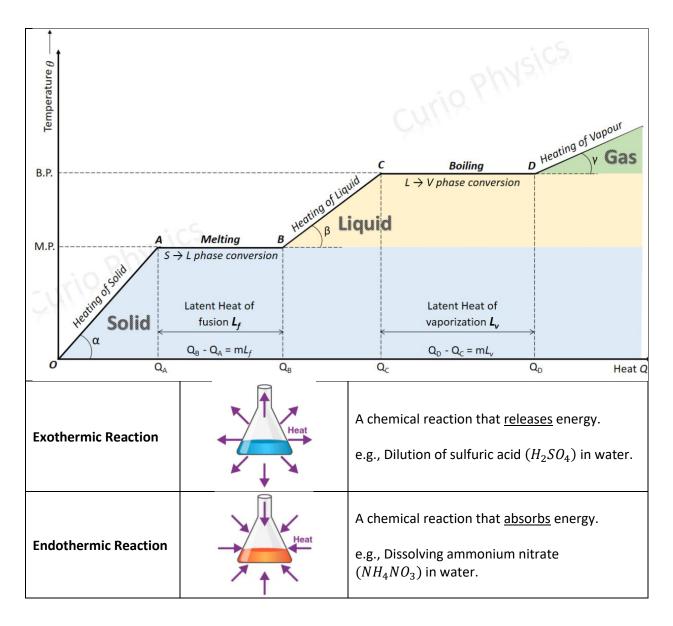
Chapter 11: Some Pretty Basic (and Acidic) Chemicals

Term	Equation / Definition	Note	
Acids (Acidic)	A chemical that <u>donates</u> an H ⁺ . Have more H ⁺ ions.	 Tend to taste <u>sour</u> Are covalent electrolytes Turn blue litmus paper red 	
Bases (Alkaline)	A chemical that <u>accepts</u> an H ⁺ . Have more OH ⁻ ions.	 Tend to taste <u>bitter</u> Tend to feel slippery when mixed with water Turn <u>red</u> litmus paper blue 	
Litmus	An acid/base indicate	ator that is usually on a strip of paper	
Amphoteric (Amphiprotic)	Capable of reacting as either an $\frac{1}{1}$ acid or a base (H_2O , metal oxides)		
Covalent Electrolytes	hydrofluoric acid + water \rightarrow fluoride ion + hydronium ion $HF + H_2O \rightarrow F^- + H_3O^-$ acid base $ammonium \ hydroxide \ (ammonia) + water \rightarrow ammonium \ ion + \ hydroxide \ ion$ $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ base acid		
Ionic Electrolytes	hydrochloric acid + sodium hydroxide (lye) \rightarrow water + salt $HCl~(aq) + NaOH~(aq) \rightarrow H_2O(l) + NaCl~(aq)$ acid base (Na^+OH^-) (Na^+Cl^-)		
Acid/Base Identification Rules	 Ammonia (NH₃) is a covalent base. If a covalent compound starts with an H, it can usually act like an acid. Ionic compounds that contain the hydroxide ion (OH⁻) can act as bases. An acid reacts with an ionic base to make water (H₂O) and salt (NaCl). 		
pH Scale	Potential hydrogen (pH). Amount of hydronium ion (H_3O^-) in the solution. pH of 0: highly acidic pH of 7: neutral pH of 14: highly alkaline		
Polyprotic Acid	An acid that can donate two or more H^+ ions. Examples: hydrogen sulfate (H_2SO_4) , carbonic acid (H_2CO_3) $CO_2(g) + H_2O(l) \rightarrow H_2CO_3(aq)$ acid rain		
Titration	The process by which an acid of known concentration is added to a base of unknown concentration (or vice versa) until a neutral pH is reached to determine the unknown concentration.		



Acid	pH of Acids					pH of Bases			
ACIU	Name	1 mM	10 mM	100 mM	Base	Name	1 mM	10 mM	10 ml
H ₂ SeO ₄	selenic acid	2.74	1.83	1	Ba(OH) ₂	barium hydroxide	11.27	12.22	13.
H ₂ SO ₄	sulfuric acid (oil of vitriol)	2.75	1.87	1	Sr(OH) ₂	strontium hydroxide (caustic alkali)	11.27	12.22	13.
НІ	hydroiodic acid (muriatic acid)	3.01	2.04	1.1	NaOH	sodium hydroxide (lye)	10.98	11.95	12.
HBr	hydrobromic acid	3.01	2.04	1.1	кон	potassium hydroxide (caustic potash)	10.98	11.95	12.
HCl	hydrochloric acid (gastric acid)	3.01	2.04	1.1	Na₂SiO₃	sodium metasilicate	11	11.91	12.
HNO ₃	nitric acid	3.01	2.04	1.1	Ca(OH) ₂ (CaO:H ₂ O)	calcium hydroxide (lime)	11.27	12.2	12.
H ₃ PO ₄	orthophosphoric acid	3.06	2.26	1.6	Na ₃ PO ₄	trisodium phosphate (food additive)	10.95	11.71	12.
H ₃ AsO ₄	arsenic acid	3.08	2.31	1.7	K ₂ CO ₃	potassium carbonate (potash or pearl ash)	10.52	11	11.
H ₂ SeO ₃	selenous acid	3.15	2.47	1.9	Na ₂ CO ₃	sodium carbonate (soda ash)	10.52	10.97	11.
H ₂ CrO ₄	chromic acid	3.03	2.33	2.1	NH ₄ OH (NH ₃ :H ₂ O)	ammonium hydroxide (Windex)	10.09	10.61	11.
C ₆ H ₈ O ₇	citric acid (lemon juice)	3.24	2.62	2.1	Mg(OH) ₂ (MgO:H ₂ O)	magnesium hydroxide	10.4	10.4	10
HF	hydrofluoric acid	3.27	2.65	2.1	CaCO₃	calcium carbonate (limestone or calcite)	9.91	9.91	9.
HNO ₂	nitrous acid	3.28	2.67	2.1	Fe(OH) ₂	iron(II) hydroxide (ferrous hydroxide)	9.45	9.45	9.4
HOCN	isocyanic acid	3.35	2.76	2.2	Cd(OH) ₂	cadmium hydroxide	9.36	9.36	9.3
CH ₂ O ₂	formic acid, (formic or methanoic acid)	3.47	2.91	2.4	Na ₂ B ₄ O ₇	sodium borate (Borax)	9.21	9.17	9.0
H ₂ Se	hydrogen selenide	3.49	2.93	2.4	Co(OH) ₂	cobalt(II) hydroxide	9.15	9.15	9.3
H ₂ MoO ₄	molybdic acid	3.46	2.94	2.4	Zn(OH) ₂	zinc hydroxide	8.88	8.88	8.8
$C_3H_6O_3$	lactic acid (milk acid)	3.51	2.96	2.4	Ni(OH) ₂	nickel(II) hydroxide	8.37	8.37	8.3
C ₂ H ₄ O ₂	acetic acid (vinegar)	3.91	3.39	2.9	CH₃COOK	potassium acetate (diuretic salt)	7.87	8.33	8.7
H ₂ CO ₃	carbonic acid	4.68	4.18	3.7	CH₃COONa	sodium acetate (acetic acid)	7.87	8.33	8.
H ₂ S	hydrogen sulfide	4.97	4.47	4	KHCO₃	potassium hydrogen carbonate	8.27	8.25	8.:
H ₃ AsO ₃	arsenious acid	6.07	5.58	5.1	NaHCO₃	sodium hydrogen carbonate (baking soda)	8.27	8.22	8.0
HCN	hydrocyanic acid	6.11	5.62	5.1	Be(OH)₂	beryllium hydroxide	7.9	7.9	7.
H ₃ BO ₃	boric acid	6.12	5.62	5.1	Cu(OH) ₂	copper(II) hydroxide	7.69	7.69	7.6
H ₄ SiO ₄	silicic acid	6.4	5.91	5.4	Pb(OH) ₂	lead(II) hydroxide	7.54	7.54	7.5
H ₄ SiO ₄ H ₂ O	silicic acid pure water	6.4 7.0	6.26 7.0	6.3 7.0	Cr(OH)₃ Hg(OH)₂	chromium(III) hydroxide mercury(II) hydroxide	7.04 7.03	7.04 7.03	7.0 7.0

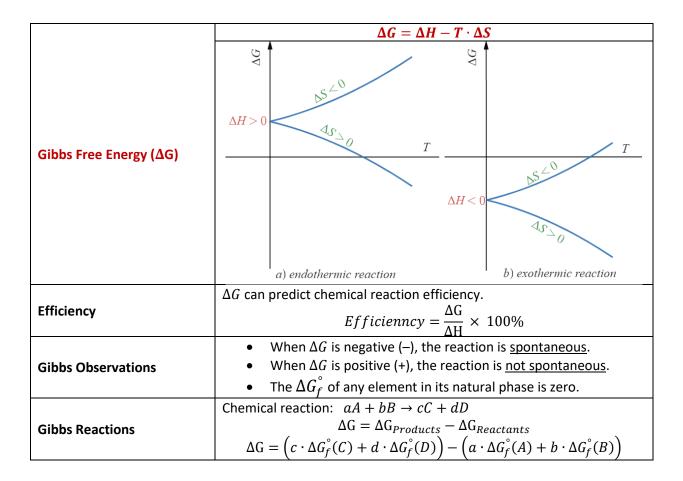
Source: agion (27 Oct 2024), pH of Common Acids and Bases, https://www.agion.de/


Chapter 12: Reduction and Oxidation

Term	Description	Equation						
Chemical Reaction Types	2. Decomposition 3. Single Displacement 4. Double Displacement 5. Combustion 6. Acid-Base	1. $A + B \rightarrow AB$ 2. $AB \rightarrow A + B$ 3. $A + BC \rightarrow AC + B$ 4. $AB + CD \rightarrow AD + CB$ 5. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O + \text{heat (propane)}$ 6. $HA + BOH \rightarrow BA + H_2O$ 7. $Fe^0 + O_2^0 \rightarrow Fe_2^{3+} + O_3^{2-}$						
Oxidation State	The charge on an ion, or for a more the shared electrons in a bond we atom. Atomic No.	rolecule, the charge that an atom would have, if were always given to the more electronegative Electronegativity decreases as we move right to left from fluorine He n/a High B C N O F N Ne n/a 3.98 n/a Al Si P S C I A A I S C I S S C I A A I I S C I S S C I S S C I S S C I S S C I S S C I S S C I S S C I S S C I						
Oxidation State Rules	 These rules are always true: For ions composed of only one atom, the oxidation state is equal to the charge on the ion. For all elements and homonuclear molecules, the oxidation state of each atom is 0. For molecules and polyatomic ions, the sum of the oxidation states must equal the total charge. The oxidation state of F in any compound is 1 In covalent compounds and polyatomic ions, H has an oxidation state of 1+. These rules are usually true: In most compounds, O has an oxidation state of 2 Group 7A elements (especially CI) usually have an oxidation state of 1 							

Chapter 13: The Heat Is On

Term	Equation	Note				
		The ability to do work.				
Energy	$E = W + q + K + \Delta U$	Units are energy are always in Joules (<i>J</i>).				
		Conservation of energy $(E_i = E_f)$.				
Work	W = Fd	The application of a force to move an object over a distance.				
		Energy that is exchanged because of a				
Heat	q	difference in temperature or a phase change.				
Kinetic Energy	$K = \frac{1}{2}mv^2$ $\Delta U_g = mgh$	Energy that is in motion.				
Potential Energy	$\Delta U_g = mgh$	Energy that is <u>stored</u> .				
calorie	$1 \ calorie = 4.184 \ J$	The amount of heat required to raise 1 gram of water 1 degree Celsius.				
Calorie	1 <u>Food</u> C alorie = 1,000 chemist c alories	Big 'C' vs. little 'c'.				
Specific Heat Capacity (c)	$c_{H_2O} = 4.184 \frac{J}{g ^{\circ}C}$	The amount of heat it takes to raise a specific mass of a substance 1 °C.				
Heat Capacity (C)	$q = C \cdot \Delta T$	The amount of heat it takes to raise an entire object 1 °C. Takes the mass of the object into account.				
	$q = m \cdot c \cdot \Delta T$					
	where:	Thermometer				
Measuring Heat	m = mass	to.				
	$c = specific heat capacido \Delta T = T_{final} - T_{initial}$	Stirrer				
Calorimeter		Reaction Vessel Water Insulated Walls				
	$-q_{object}$ = $q_{liquid} + q_{calorimeter}$	In a calorimeter experiment, the temperature of the liquid and the calorimeter are always the same. In addition, the <i>final</i> temperature of the liquid, calorimeter, and object are all the same.				
Latent Heat	$egin{aligned} q &= m \cdot L \ where: \ L_f \ &= Latent\ heat\ of\ fusion \ L_v \ &= Latent\ heat\ of\ vaporis. \end{aligned}$					


Specific Heat Capacities of Different Substances

Substance	Specific Heat J/g°C	Substance	Specific Heat J/g°C
Water (I)	4.184	Nickel (s)	0.440
Water (s)	2.093	Zinc (s)	0.387
Vegetable Oil	2.000	Copper (s)	0.386
Air	1.020	Brass (s)	0.380
Magnesium (s)	1.020	Sand	0.290
Aluminum (s)	0.900	Silver (s)	0.240
Glass	0.840	Tin (s)	0.210
Potassium (s)	0.757	Lead(s)	0.160
Calcium (s)	0.650	Mercury (I)	0.140
Iron (s)	0.444	Gold (s)	0.126

Chapter 14: Thermodynamics

Term	Description	Equation							
Enthalpy (ΔH)	The energy change that acc	ompanies a chemical or physical change.							
Enthalpy Observations	 For exothermic reactions, ΔH is negative (–). 								
	• For endothermic reactions, ΔH is positive (+).								
Enthalpy	ΔH = (Energy for breaking bonds) – (Energy from making bonds)								
Bond Energy	The energy required to break a mole of a given type of bond.								
State Function	A property that is independ	ent of the path.							
Default Enthalpy	The ΔH_f° of any element in	its natural phase is zero.							
	Chemical reaction: $aA + b$	$B \to cC + dD$							
Hess's Law	$\Delta H = \Delta I$	$H_{Products} - \Delta H_{Reactants}$							
	$\Delta H = \left(c \cdot \Delta H_f^{\circ}(C) + d \cdot \right)$	$\Delta H_f^{\circ}(D)$ $- \left(a \cdot \Delta H_f^{\circ}(A) + b \cdot \Delta H_f^{\circ}(B) \right)$							
	The energy requir	ed to initiate a chemical reaction.							
Activation Energy	Energy Reactants	Activation Energy AH Products Reaction Progress							
Thermodynamics	 The study of the relationships and conversions between different forms of energy. 1st Law: Energy cannot be created or destroyed. It can only change form. 2nd Law: The entropy of the universe can never decrease. It must always stay the same or increase. 								

	A measure of the amount of thermal energy in a system that is <u>not</u> available to do useful work.				
Entropy (ΔS)					
	Because work is obtained from ordered molecular motion, entropy is				
	also a measure of the molecular <u>disorder</u> , or randomness, of a system.				
Change in Entropy	$\Delta S_{system} + \Delta S_{surroundings} \ge 0$				
	 The <u>solid</u> phase is the <u>lowest</u>-entropy phase. 				
Entropy Observations	 The gas phase is the <u>highest</u>-entropy phase. 				
	 The larger the number of molecules, the higher the entropy. 				
	Chemical reaction: $aA + bB \rightarrow cC + dD$				
Entropy Reactions	$\Delta S = \Delta S_{Products} - \Delta S_{Reactants}$				
	$\Delta S = \left(c \cdot S^{\circ}(C) + d \cdot S^{\circ}(D)\right) - \left(a \cdot S^{\circ}(A) + b \cdot S^{\circ}(B)\right)$				

Bond Energies

Bond	Energy (kJ/mole)	Bond	Energy (kJ/mole)	Bond	Energy (kJ/mole)
H - H	436	C-C	350	F - F	159
H-C	410	C-F	450	Cl-Cl	243
H-O	460	C-Cl	330	S-H	340
H-Cl	432	C-O	350	S-F	310
H-N	390	C-N	300	O-Cl	200
C = C	611	C = O	732	$N \equiv N$	945
N = O	607	O = O	498	$C \equiv O$	1072

Standard Enthalpies of Formation

Compound	ΔH_f° (kJ/mole)	Compound	ΔH_f° (kJ/mole)	Compound	ΔH_f° (kJ/mole)
$CH_4(g)$	-74.9	$C_2H_6O(l)$	-277.7	$H_2O_2(aq)$	-191.2
$C_2H_6(g)$	-84.7	$CO_{2}\left(g ight)$	-393.5	HCl(g)	-92.3
$C_6H_6(g)$	82.6	CO (g)	-110.5	HCl (aq)	-167.2
$C_6H_6(l)$	49.0	$CS_{2}\left(g\right)$	116.9	$NH_3(g)$	-45.9
$CH_4O(g)$	-200.7	$CS_{2}\left(l\right)$	89.7	NH_3 (aq)	-80.3
$CH_4O(l)$	-238.7	$H_2O(g)$	-241.8	$NH_4Cl(s)$	-314.6
$C_2H_6O(g)$	-235.1	$H_2O(l)$	-285.8	NaOH (s)	-425.9

Absolute Entropies

Substance	S° (J/mole·K)	Substance	S° (J/mole·K)	Substance	S° (J/mole∙K)
$CH_4(g)$	186.1	$C_2H_6O(l)$	160.7	$H_2O_2(aq)$	143.9
$C_2H_6(g)$	229.5	$CO_{2}\left(g ight)$	213.7	HCl(g)	186.8
$C_6H_6(g)$	269.2	CO (g)	197.5	HCl (aq)	56.5
$C_6H_6(l)$	173.4	$CS_{2}\left(g\right)$	237.9	$NH_3(g)$	192.7
$CH_4O(g)$	239.7	$CS_{2}\left(l\right)$	153.1	NH_3 (aq)	111.3
$CH_4O(l)$	126.8	$H_2O(g)$	188.7	$NH_4Cl(s)$	94.9
$C_2H_6O(g)$	282.6	$H_2O(l)$	70.0	NaOH (s)	64.4
C (graphite)	5.7	$H_{2}\left(g\right)$	130.6	$Cl_{2}\left(g\right)$	223.0
$C\left(g ight)$	158.0	$O_{2}\left(g ight)$	205.0	$N_2(g)$	191.6

Standard Gibbs Free Energy of Formation

Compound	ΔG_f° (kJ/mole)	Compound	ΔG_f° (kJ/mole)	Compound	ΔG_f° (kJ/mole)
$CH_4(g)$	-50.8	$C_2H_6O(l)$	-174.9	$H_2O_2(aq)$	-134.1
$C_2H_6(g)$	-32.9	$CO_{2}\left(g ight)$	-394.4	HCl(g)	-95.3
$C_6H_6(g)$	129.7	CO (g)	-137.2	HCl (aq)	-131.3
$C_6H_6(l)$	124.4	$CS_{2}\left(g\right)$	66.9	$NH_3(g)$	-16.4
$CH_4O(g)$	-162.0	$CS_{2}\left(l\right)$	65.3	NH_3 (aq)	-26.6
$CH_4O(l)$	-166.4	$H_2O(g)$	-228.6	$NH_4Cl(s)$	-203.1
$C_2H_6O(g)$	-168.8	$H_2O(l)$	-237.1	NaOH (s)	-379.7

Chapter 15: Kinetics

Term	Equation	Note
Kinetics	The study of chemical react	ion rates.
Rate	$Rate = rac{\Delta[C]}{\Delta t}$ $Rate = rac{-\Delta[A]}{\Delta t}$	Chemical reaction: $A + B \rightarrow C + D$ reactants \rightarrow products $[] = \text{``The concentration of''}$
Reaction Rate Observations	 The reaction rate is usually in the concentration of remaining the concentration of the concentration of	
Rate Equation	$Rate = k[A]^x[B]^y$	Chemical reaction: $aA + bB \rightarrow cC + dD$ rate constant orders with respect to each reactant rate = $k \times [A]^{\times} [B]^{y} [C]^{z}$ concentrations of reactants
Rate Constant	the reaction. The rate constant in temperature.	te constant depend on the overall order of ncreases exponentially with increasing ecreases with increasing activation energy.
Reaction rate.	3.0x10 ³ - 2.5x10	Reaction Rate (k) vs. Temperature

	A chemical that increases the rate of a chemical reaction without being						
	used up in the process.						
	i.e., It lowers the activation energy of the reaction by pulling the						
	molecules closer to one another than they would normally be.						
	A						
	without enzyme						
Catalan	activation						
Catalyst	energy without						
	with enzyme activation						
	reactants overall energy overall energy						
	reactants e.g. CO ₂ + H ₂ O						
	reaction reaction						
	products						
	H ₂ CO ₃						
	Reaction coordinate						
	A common enzyme found in nearly all living organisms exposed to						
Catalase	oxygen which catalyzes the decomposition of H_2O_2 to H_2O and O_2 .						
	A catalyst in a phase that is <u>different</u> from that of the reactants.						
Heterogeneous Catalyst	e.g., Catalytic converter (g) + (s).						
	A device attached to the exhaust of a car that speeds up the following						
	reaction:						
	$2CO(g) + O_2(g) \rightarrow 2CO_2(\mathbf{g})$						
Catalytic Converter	The catalyst is the platinum-coated (solid) mesh that lowers the						
	activation energy.						
	Carbon Monoxide						
	(CO) Carbon Dioxide						
	Oxygen (CO_2)						
	ASSOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS						
	000000000000000000000000000000000000000						
	Catalyst Surface						
	1 Adsorption 2 Reaction 3 Desorption						
	1 Adsorption 2 Reaction 3 Desorption A catalyst in a phase that is the same as that of the reactants.						
Homogeneous Catalyst	$2O_3(g) \rightarrow 3O_2(g)$						
	A detailed, step-by-step process that tells you exactly how a reaction						
	occurs.						
	$2O_3(g) \to 3O_2(g)$						
Reaction Mechanism	Step 1: $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$						
	Step 1: $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$ Step 2: $O_3(g) \rightarrow O_2(g) + O(g)$ due to UV light						
	Step 3: $NO_2(g) + O(g) \rightarrow NO(g) + O_2(g)$						
	1 4 407 - 407 - 407 - 407						

Chapter 16: Chemical Equilibrium

Term	Description	Equation	
Chemical Equilibrium	The state that occurs in a chemical reaction when the rate of the		
Chemical Equilibrium	forward reaction equals the rate of the reverse reaction.		
Example	Reaction rate Reaction Reverse Reaction Att Annual Reverse		
Equilibrium Constant	$K = \frac{[C]_{eq}^{c} \ [D]_{eq}^{d}}{[A]_{eq}^{a} \ [B]_{eq}^{b}} \qquad \begin{array}{c} \text{Chemical reaction:} \\ aA + bB \rightarrow cC + dD \\ reactants \rightarrow products \\ \end{array}$ The value of the equilibrium constant for a given reaction changes with temperature.		
Interpreting the Constant	 When the equilibrium constant is small, the reaction makes fewer products and has lots of reactants. The smaller it is, the more reactants there are and the fewer products there are at equilibrium. We see the equilibrium constant is 1, the reaction is balanced between reactants and products. When the equilibrium constant is large, the reaction makes lots of products and has few reactants. The larger it is, the more products there are and the fewer reactants there are at equilibrium. K = 1 Reactants Products Products		

	Do not include solid or lieu	id reastants or pro	lusts in the equation for	
Focus on Gas	Do not include <u>solid</u> or <u>liquid</u> reactants or products in the equation for the equilibrium constant.			
	$K = \frac{[C]_{eq}^{c} [D]_{eq}^{d}}{[A]_{eq}^{a} [B]_{eq}^{b}}$			
	For the above equation:			
Interpreting K Results	>: If the result is <u>greater than</u> the equilibrium constant, the reaction will shift towards the reactants. If the result is greater than the equilibrium constant, the reactants.			
	 =: If the result is <u>equal</u> to the equilibrium constant, the reaction is at equilibrium. 			
	<: If the result is <u>less than</u> the equilibrium constant, the			
	reaction will shift towards the products.			
Le Chatelier's Principle	When a system at equilibrium is stressed, it will shift in a way that relieves the stress and reestablishes equilibrium.			
	Concentration	Pressure	Temperature	
	Reactant Concentration Increases	Pressure Increases	Temperature Increases	
	Product formation is favoured	Side with fewer gas molecules is favoured	Endothermic reaction is favoured	
	$A + 2B \rightleftharpoons C + D$			
	Product Concentration Increases	Pressure Decreases	Temperature Decreases	
	Reactant formation is favoured	Side with more gas molecules is favoured	Exothermic reaction is favoured	
K Shifting: Concentration	 A system in equilibrium will: 1: shift away from the side that experiences an increase in concentration. 1: shift towards the side that experiences a decrease in concentration. 			
K Shifting: Temperature	 1: When temperature is <u>raised</u>, an equilibrium will shift away from the side that contains energy. 1: When temperature is <u>lowered</u>, it will shift towards the side that contains energy. 			
K Shifting: Pressure	1: When pressure is <u>raised</u> , an equilibrium will shift away from the side that has the most gas molecules.			
	 ↓: When pressure is <u>lowered</u>, it will shift towards the side that has the most gas molecules ↔: If there are <u>no gas</u> molecules, the equilibrium doesn't shift 			
	when pressure is changed.			
Acid Ionization Constant (K_a)	The equilibrium constant for the reaction between an <u>acid</u> and water.			
Base Ionization Constant (K_b)	The equilibrium constant f	or the reaction betw	veen a <u>base</u> and water.	

Sources

These chapters and content are from the textbook:

• Dr. Jay L. Wile (2015). <u>Discovering Design with Chemistry</u>, 1st Edition.