Harold's High School Chemistry Cheat Sheet 25 August 2025 # **Chapter 1: Measuring Up** | Term | | Descripti | on | | Equation | | |---------------------|--|--|------------------------|--|--------------------------|-----------------------| | Rulers | When usin | When using a ruler that is marked off in 16 th s of an inch, report your answers to | | | | | | Kuleis | | a hundredth of an inch. | | | | | | | | The unit of measurement is just as important as the number. You must always list the units, followed by the compound! | | | | | | Units | | You must a | • | | y the compoun | d! | | | 4 411 | Example: 6.28 mL H ₂ O 1. All non-zero figures (1, 2, 3, 4, 5, 6, 7, 8, and 9) are significant. | | | | | | | | _ | | | _ | | | Significant Figures | | | ficant if it is bet | _ | - | ltathariaht | | | | decimal po | _ | at the end of t | he number <i>and</i> | to the right | | | | | | easurements v | ou must report | vour | | | | _ | _ | | se number in th | • | | | | | • | | you must repo | • | | Using SigFigs | | | - | | ures as the mea | • | | | | | est significant fi | - | | | | | 3. There | is always so | ome <u>error</u> in th | e last significan | t figure of a me | asurement. | | Precision vs. | • Precis | | | | | | | Accuracy | | decimal places). | | | | | | Accuracy | Accuracy: How close a measurement is to the <u>true</u> or accepted value. | | | | | | | | | Prefix | Abbreviation | | | | | | | giga | G | 1,000,000,0 | | _ | | | | mega | M | 1,000,000 | | _ | | | | kilo | k | 1,000 | 10 ³ | _ | | Prefixes | | hector | Н | 100 | 10 ² | - | | | | deca | Da | 0.01 | 10 ⁻² | _ | | | | centi
milli | c
m | 0.001 | 10 ⁻³ | - | | | | micro | μ | 0.000001 | | ╡ | | | | nano | n n | 0.0000000 | | - | | Scientific Notation | 14.000.0 | | $10^7 = 1.4E7$ | $0.00000014 = 1.4 \times 10^{-7} = 1.4E-7$ | | = 1.4F-7 | | | | Volume (| | 0.00000 | 1 cm ³ = 1 mL | | | | | Mass (g) | - | weig | | vitv | | Measuring | | | | weight = mass × gravity mass m | | m | | | | Density (, | 0) | density | $={volume}$ or | $\rho = \frac{1}{V}$ | | | | | 0.1436 | $mL = ? m^3$ | | | | Unit Conversion | | 1 | | . a l | ,, , <u>,,</u> , | | | (Train Track | 143.6 | _ 10 | 000 mL | 1 cm ³ | , , | 0.1436 m ³ | | Method) | 1 L 1 mL (100 cm) ³ | | | | | | | - | | | | | | | | | | | | | | | # **Chapter 2: What's The Matter** | Term | Description | Equation | |------|-------------|----------| # **Chapter 3: Making Sense of Atoms and Elements** | Term | Description | Equation | |------|-------------|----------| # **Chapter 4: The Modern View of Atoms and Their Chemistry** | Term | Description | Equation | |------|-------------|----------| # **Chapter 5: Covalent Compounds and Their Molecular Geometry** | Term | Description | Equation | |------|-------------|----------| # **Chapter 6: Physical and Chemical Changes** | Term | Description | Equation | |------|-------------|----------| # **Chapter 7: Stoichiometry** | Term | Description | Equation | |------|-------------|----------| # **Chapter 8: Still More on Stoichiometry** ### **Common Polyatomic Ions** (Memorize) | # | Name | lon | |----|-------------|---------------| | 1 | Ammonium | NH_4^+ | | 2 | Hydronium | H_3O^+ | | 3 | Acetate | $C_2H_3O_2^-$ | | 4 | Cyanide | CN- | | 5 | Bicarbonate | HCO_3^- | | 6 | Carbonate | CO_3^{2-} | | 7 | Hydroxide | OH- | | 8 | Nitrite | NO_2^- | | 9 | Nitrate | NO_3^- | | 10 | Sulfite | SO_3^{2-} | | 11 | Sulfate | SO_4^{2-} | | 12 | Phosphate | PO_4^{3-} | | 13 | Chlorite | ClO_2^- | | 14 | Manganate | MnO_4^{2-} | # **Chapter 9: Chemists Have Solutions** | Term | Descri | Equa | tion | | |----------------------------------|---|---|-------------------|-----------------| | Dissolving Compounds | When <u>ionic</u> compounds dissolve, they split up into their individual <u>atoms</u>. When polar <u>covalent</u> compounds dissolve, they split up into their individual <u>molecules</u>. | | | | | | State | Temperature | Pressure | | | Solubility of Solutes | Solid | <u> </u> | - | | | , | Liquid | - | - | | | | Gas | Ţ | <u> </u> | | | | | | | | | Concentration | The behavior of a chemical often depends on concentration. | | | ration. | | Molarity | $Molarity = \frac{moles\ of\ solute}{liters\ of\ solution}\ M$ Liters | | | rs | | Molality | $Molality = \frac{moles\ of\ solute}{kilograms\ of\ solvent}\ m$ Kilograms | | ams | | | Freezing Point Depression | $\Delta T = -i \cdot K_f \cdot m$ | | $K_{f_H_2O} = 1$ | .86 <i>°C/m</i> | | Boiling Point Elevation | $\Delta T = i$ | $K_{f_{-}H_{2}O} = 1$
$K_{b_{-}H_{2}O} = 0.$ | 512 °C/m | | # Chapter 10: It's a Gas! | Term | Equation | Note | | |------------------|---|--|--| | Ideal Gas Law | PV = nRT | $P = Pressure (atm)$ $V = Volume (L)$ $n = \# Moles of gas$ Ideal Gas Constant (R): $R = 0.0821 \frac{L \ atm}{mole \ K}$ $T = Temperature (K)$ | | | Boyle's Law | $P_1V_1 = P_2V_2$ | Assumes $T = constant$ | | | Charle's Law | $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ | Assumes $P = constant$ | | | Combined Gas Law | $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ | Since $nR = constant$ | | | Avagadro's Law | $n = \frac{PV}{RT}$ | Same number of molecules or atoms | | | Volumes of Gases | $V = \frac{RT}{P}$ | Relationship between volumes of those gases | | | Kelvin (T) | $K = {^{\circ}C} + 273.15$ $0 K = Absolute Zero$ | ${}^{\circ}F = \left(\frac{9}{5}\right) {}^{\circ}C + 32 \qquad [32^{\circ} - 212^{\circ}]$ ${}^{\circ}C = \left(\frac{5}{9}\right) ({}^{\circ}F - 32) \qquad [0^{\circ} - 100^{\circ}]$ $Pressure = \frac{Force}{Area}$ | | | Pressure (P) | $P = \frac{F}{A}$ $1 \text{ atm} = 760 \text{ torr}$ $1 \text{ torr} = 1 \text{ mmHg}$ $1 \text{ mmHg} = 133.322 \text{ Pa}$ $1 \text{ atm} = 101.325 \text{ Pascals (Pa)}$ | $Pressure = \frac{Force}{Area}$ Units can be torr, atm, or Pa | | | Ideal Gas | a. The molecules or atoms that make up the gas occupy no volume. b. The molecules or atoms that make up the gas are not attracted to each other. c. The collisions that occur between the molecules or atoms that make up the gas are elastic, which means no energy is lost in such a collision. This is also true for any collisions between the molecules or atoms that make up the gas and the walls of the container in which the gas is held. | | | | STP | A gas is at STP if its pressure is 1 atm and its temperature is $0^{\circ}C$. | Standard Temperature and Pressure | | | Dalton's Law | $P_{total} = P_a + P_b + P_c + \cdots$ | Partial pressures | | | Mole Fraction | $P_{total} = P_a + P_b + P_c + \cdots$ $X_a = \frac{P_a}{P_{total}}$ | $X_a = \frac{\text{moles of compound a}}{\text{total moles in the mixture}}$ | | | Vapor Pressure | Boiling point = The temperature at which a liquid's vapor pressure is equal to the external air pressure. | | | | Extrapolation | Extending a trend in data to situations for which no measurements have been made. Usually linear approximations. | | | ## **Vapor Pressure of Water** | Temperature | Vapor Pressure | Temperature | Vapor Pressure | |-------------|----------------|-------------|----------------| | (°C) | (torr) | (°C) | (torr) | | 0 | 4.6 | 39 | 52.4 | | 2 | 5.3 | 40 | 55.3 | | 4 | 6.1 | 42 | 61.5 | | 6 | 7.0 | 44 | 68.3 | | 8 | 8.0 | 46 | 75.5 | | 10 | 9.2 | 48 | 83.7 | | 12 | 10.5 | 50 | 92.5 | | 14 | 12.0 | 52 | 102.1 | | 15 | 12.8 | 54 | 112.5 | | 16 | 13.6 | 56 | 123.8 | | 17 | 14.5 | 58 | 136.1 | | 18 | 15.5 | 60 | 149.4 | | 19 | 16.5 | 62 | 163.8 | | 20 | 17.5 | 64 | 179.3 | | 21 | 18.7 | 66 | 196.1 | | 22 | 19.8 | 68 | 214.2 | | 23 | 21.1 | 70 | 233.7 | | 24 | 22.4 | 72 | 254.6 | | 25 | 23.8 | 74 | 277.2 | | 26 | 25.2 | 76 | 301.4 | | 27 | 26.7 | 78 | 327.3 | | 28 | 28.3 | 80 | 355.1 | | 29 | 30.0 | 82 | 384.9 | | 30 | 31.8 | 84 | 416.8 | | 31 | 33.7 | 86 | 450.9 | | 32 | 35.7 | 88 | 487.1 | | 33 | 37.7 | 90 | 525.8 | | 34 | 39.9 | 92 | 567.0 | | 35 | 42.2 | 94 | 610.9 | | 36 | 44.6 | 96 | 657.6 | | 37 | 47.1 | 98 | 707.3 | | | 49.7 | 100 | 760.0 | **Chapter 11: Some Pretty Basic (and Acidic) Chemicals** | Term | Equation / Definition | Note | | |--------------------------------------|---|---|--| | Acids
(Acidic) | A chemical that <u>donates</u> an H ⁺ .
Have more H ⁺ ions. | Tend to taste <u>sour</u> Are covalent electrolytes Turn blue litmus paper red | | | Bases
(Alkaline) | A chemical that <u>accepts</u> an H ⁺ .
Have more OH ⁻ ions. | Tend to taste <u>bitter</u> Tend to feel slippery when mixed with water Turn <u>red</u> litmus paper blue | | | Litmus | An acid/base indicate | ator that is usually on a strip of paper | | | Amphoteric
(Amphiprotic) | Capable of reacting as either an $\frac{1}{1}$ acid or a base (H_2O , metal oxides) | | | | Covalent
Electrolytes | hydrofluoric acid + water \rightarrow fluoride ion + hydronium ion $HF + H_2O \rightarrow F^- + H_3O^-$ acid base $ammonium \ hydroxide \ (ammonia) + water \rightarrow ammonium \ ion + \ hydroxide \ ion$ $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ base acid | | | | Ionic Electrolytes | hydrochloric acid + sodium hydroxide (lye) \rightarrow water + salt
$HCl~(aq) + NaOH~(aq) \rightarrow H_2O(l) + NaCl~(aq)$
acid base (Na^+OH^-) (Na^+Cl^-) | | | | Acid/Base
Identification
Rules | Ammonia (NH₃) is a covalent base. If a covalent compound starts with an H, it can usually act like an acid. Ionic compounds that contain the hydroxide ion (OH⁻) can act as bases. An acid reacts with an ionic base to make water (H₂O) and salt (NaCl). | | | | pH Scale | Potential hydrogen (pH). Amount of hydronium ion (H_3O^-) in the solution. pH of 0: highly acidic pH of 7: neutral pH of 14: highly alkaline | | | | Polyprotic Acid | An acid that can donate two or more H^+ ions. Examples: hydrogen sulfate (H_2SO_4) , carbonic acid (H_2CO_3) $CO_2(g) + H_2O(l) \rightarrow H_2CO_3(aq)$ acid rain | | | | Titration | The process by which an acid of known concentration is added to a base of unknown concentration (or vice versa) until a neutral pH is reached to determine the unknown concentration. | | | | Acid | pH of Acids | | | | | pH of Bases | | | | |---|---|------------|-------------|------------|---|--|--------------|--------------|------------| | ACIU | Name | 1
mM | 10
mM | 100
mM | Base | Name | 1
mM | 10
mM | 10
ml | | H ₂ SeO ₄ | selenic acid | 2.74 | 1.83 | 1 | Ba(OH) ₂ | barium hydroxide | 11.27 | 12.22 | 13. | | H ₂ SO ₄ | sulfuric acid
(oil of vitriol) | 2.75 | 1.87 | 1 | Sr(OH) ₂ | strontium hydroxide
(caustic alkali) | 11.27 | 12.22 | 13. | | НІ | hydroiodic acid
(muriatic acid) | 3.01 | 2.04 | 1.1 | NaOH | sodium hydroxide
(lye) | 10.98 | 11.95 | 12. | | HBr | hydrobromic acid | 3.01 | 2.04 | 1.1 | кон | potassium hydroxide
(caustic potash) | 10.98 | 11.95 | 12. | | HCl | hydrochloric
acid
(gastric acid) | 3.01 | 2.04 | 1.1 | Na₂SiO₃ | sodium metasilicate | 11 | 11.91 | 12. | | HNO ₃ | nitric acid | 3.01 | 2.04 | 1.1 | Ca(OH) ₂
(CaO:H ₂ O) | calcium hydroxide
(lime) | 11.27 | 12.2 | 12. | | H ₃ PO ₄ | orthophosphoric acid | 3.06 | 2.26 | 1.6 | Na ₃ PO ₄ | trisodium phosphate (food additive) | 10.95 | 11.71 | 12. | | H ₃ AsO ₄ | arsenic acid | 3.08 | 2.31 | 1.7 | K ₂ CO ₃ | potassium carbonate
(potash or pearl ash) | 10.52 | 11 | 11. | | H ₂ SeO ₃ | selenous acid | 3.15 | 2.47 | 1.9 | Na ₂ CO ₃ | sodium carbonate
(soda ash) | 10.52 | 10.97 | 11. | | H ₂ CrO ₄ | chromic acid | 3.03 | 2.33 | 2.1 | NH ₄ OH
(NH ₃ :H ₂ O) | ammonium hydroxide
(Windex) | 10.09 | 10.61 | 11. | | C ₆ H ₈ O ₇ | citric acid
(lemon juice) | 3.24 | 2.62 | 2.1 | Mg(OH) ₂
(MgO:H ₂ O) | magnesium hydroxide | 10.4 | 10.4 | 10 | | HF | hydrofluoric
acid | 3.27 | 2.65 | 2.1 | CaCO₃ | calcium carbonate (limestone or calcite) | 9.91 | 9.91 | 9. | | HNO ₂ | nitrous acid | 3.28 | 2.67 | 2.1 | Fe(OH) ₂ | iron(II) hydroxide
(ferrous hydroxide) | 9.45 | 9.45 | 9.4 | | HOCN | isocyanic acid | 3.35 | 2.76 | 2.2 | Cd(OH) ₂ | cadmium hydroxide | 9.36 | 9.36 | 9.3 | | CH ₂ O ₂ | formic acid,
(formic or
methanoic acid) | 3.47 | 2.91 | 2.4 | Na ₂ B ₄ O ₇ | sodium borate
(Borax) | 9.21 | 9.17 | 9.0 | | H ₂ Se | hydrogen
selenide | 3.49 | 2.93 | 2.4 | Co(OH) ₂ | cobalt(II) hydroxide | 9.15 | 9.15 | 9.3 | | H ₂ MoO ₄ | molybdic acid | 3.46 | 2.94 | 2.4 | Zn(OH) ₂ | zinc hydroxide | 8.88 | 8.88 | 8.8 | | $C_3H_6O_3$ | lactic acid
(milk acid) | 3.51 | 2.96 | 2.4 | Ni(OH) ₂ | nickel(II) hydroxide | 8.37 | 8.37 | 8.3 | | C ₂ H ₄ O ₂ | acetic acid
(vinegar) | 3.91 | 3.39 | 2.9 | CH₃COOK | potassium acetate
(diuretic salt) | 7.87 | 8.33 | 8.7 | | H ₂ CO ₃ | carbonic acid | 4.68 | 4.18 | 3.7 | CH₃COONa | sodium acetate
(acetic acid) | 7.87 | 8.33 | 8. | | H ₂ S | hydrogen sulfide | 4.97 | 4.47 | 4 | KHCO₃ | potassium hydrogen carbonate | 8.27 | 8.25 | 8.: | | H ₃ AsO ₃ | arsenious acid | 6.07 | 5.58 | 5.1 | NaHCO₃ | sodium hydrogen
carbonate
(baking soda) | 8.27 | 8.22 | 8.0 | | HCN | hydrocyanic acid | 6.11 | 5.62 | 5.1 | Be(OH)₂ | beryllium hydroxide | 7.9 | 7.9 | 7. | | H ₃ BO ₃ | boric acid | 6.12 | 5.62 | 5.1 | Cu(OH) ₂ | copper(II) hydroxide | 7.69 | 7.69 | 7.6 | | H ₄ SiO ₄ | silicic acid | 6.4 | 5.91 | 5.4 | Pb(OH) ₂ | lead(II) hydroxide | 7.54 | 7.54 | 7.5 | | H ₄ SiO ₄
H ₂ O | silicic acid
pure water | 6.4
7.0 | 6.26
7.0 | 6.3
7.0 | Cr(OH)₃
Hg(OH)₂ | chromium(III) hydroxide
mercury(II) hydroxide | 7.04
7.03 | 7.04
7.03 | 7.0
7.0 | Source: agion (27 Oct 2024), pH of Common Acids and Bases, https://www.agion.de/ **Chapter 12: Reduction and Oxidation** | Term | Description | Equation | | | | | | | |----------------------------|---|--|--|--|--|--|--|--| | Chemical
Reaction Types | 2. Decomposition 3. Single Displacement 4. Double Displacement 5. Combustion 6. Acid-Base | 1. $A + B \rightarrow AB$
2. $AB \rightarrow A + B$
3. $A + BC \rightarrow AC + B$
4. $AB + CD \rightarrow AD + CB$
5. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O + \text{heat (propane)}$
6. $HA + BOH \rightarrow BA + H_2O$
7. $Fe^0 + O_2^0 \rightarrow Fe_2^{3+} + O_3^{2-}$ | | | | | | | | Oxidation State | The charge on an ion, or for a more the shared electrons in a bond we atom. Atomic No. | rolecule, the charge that an atom would have, if were always given to the more electronegative Electronegativity decreases as we move right to left from fluorine He n/a High B C N O F N Ne n/a 3.98 n/a Al Si P S C I A A I S C I S S C I A A I I S C I S S C I S S C I S S C I S S C I S S C I S S C I S S C I S S C I | | | | | | | | Oxidation State
Rules | These rules are always true: For ions composed of only one atom, the oxidation state is equal to the charge on the ion. For all elements and homonuclear molecules, the oxidation state of each atom is 0. For molecules and polyatomic ions, the sum of the oxidation states must equal the total charge. The oxidation state of F in any compound is 1 In covalent compounds and polyatomic ions, H has an oxidation state of 1+. These rules are usually true: In most compounds, O has an oxidation state of 2 Group 7A elements (especially CI) usually have an oxidation state of 1 | | | | | | | | Chapter 13: The Heat Is On | Term | Equation | Note | | | | | |----------------------------|---|---|--|--|--|--| | | | The ability to do work. | | | | | | Energy | $E = W + q + K + \Delta U$ | Units are energy are always in Joules (<i>J</i>). | | | | | | | | Conservation of energy $(E_i = E_f)$. | | | | | | Work | W = Fd | The application of a force to move an object over a distance. | | | | | | | | Energy that is exchanged because of a | | | | | | Heat | q | difference in temperature or a phase change. | | | | | | Kinetic Energy | $K = \frac{1}{2}mv^2$ $\Delta U_g = mgh$ | Energy that is in motion. | | | | | | Potential Energy | $\Delta U_g = mgh$ | Energy that is <u>stored</u> . | | | | | | calorie | $1 \ calorie = 4.184 \ J$ | The amount of heat required to raise 1 gram of water 1 degree Celsius. | | | | | | Calorie | 1 <u>Food</u> C alorie = 1,000
chemist c alories | Big 'C' vs. little 'c'. | | | | | | Specific Heat Capacity (c) | $c_{H_2O} = 4.184 \frac{J}{g ^{\circ}C}$ | The amount of heat it takes to raise a specific mass of a substance 1 °C. | | | | | | Heat Capacity (C) | $q = C \cdot \Delta T$ | The amount of heat it takes to raise an entire object 1 °C. Takes the mass of the object into account. | | | | | | | $q = m \cdot c \cdot \Delta T$ | | | | | | | | where: | Thermometer | | | | | | Measuring Heat | m = mass | to. | | | | | | | $c = specific heat capacido \Delta T = T_{final} - T_{initial}$ | Stirrer | | | | | | Calorimeter | | Reaction Vessel Water Insulated Walls | | | | | | | $-q_{object}$ = $q_{liquid} + q_{calorimeter}$ | In a calorimeter experiment, the temperature of the liquid and the calorimeter are always the same. In addition, the <i>final</i> temperature of the liquid, calorimeter, and object are all the same. | | | | | | Latent Heat | $egin{aligned} q &= m \cdot L \ where: \ L_f \ &= Latent\ heat\ of\ fusion \ L_v \ &= Latent\ heat\ of\ vaporis. \end{aligned}$ | | | | | | ## **Specific Heat Capacities of Different Substances** | Substance | Specific Heat J/g°C | Substance | Specific Heat J/g°C | |---------------|---------------------|-------------|---------------------| | Water (I) | 4.184 | Nickel (s) | 0.440 | | Water (s) | 2.093 | Zinc (s) | 0.387 | | Vegetable Oil | 2.000 | Copper (s) | 0.386 | | Air | 1.020 | Brass (s) | 0.380 | | Magnesium (s) | 1.020 | Sand | 0.290 | | Aluminum (s) | 0.900 | Silver (s) | 0.240 | | Glass | 0.840 | Tin (s) | 0.210 | | Potassium (s) | 0.757 | Lead(s) | 0.160 | | Calcium (s) | 0.650 | Mercury (I) | 0.140 | | Iron (s) | 0.444 | Gold (s) | 0.126 | **Chapter 14: Thermodynamics** | Term | Description | Equation | | | | | | | | |-------------------------|---|--|--|--|--|--|--|--|--| | Enthalpy (ΔH) | The energy change that acc | ompanies a chemical or physical change. | | | | | | | | | Enthalpy Observations | For exothermic reactions, ΔH is negative (–). | | | | | | | | | | | • For endothermic reactions, ΔH is positive (+). | | | | | | | | | | Enthalpy | ΔH = (Energy for breaking bonds) – (Energy from making bonds) | | | | | | | | | | Bond Energy | The energy required to break a mole of a given type of bond. | | | | | | | | | | State Function | A property that is independ | ent of the path. | | | | | | | | | Default Enthalpy | The ΔH_f° of any element in | its natural phase is zero. | | | | | | | | | | Chemical reaction: $aA + b$ | $B \to cC + dD$ | | | | | | | | | Hess's Law | $\Delta H = \Delta I$ | $H_{Products} - \Delta H_{Reactants}$ | | | | | | | | | | $\Delta H = \left(c \cdot \Delta H_f^{\circ}(C) + d \cdot \right)$ | $\Delta H_f^{\circ}(D)$ $- \left(a \cdot \Delta H_f^{\circ}(A) + b \cdot \Delta H_f^{\circ}(B) \right)$ | | | | | | | | | | The energy requir | ed to initiate a chemical reaction. | | | | | | | | | Activation Energy | Energy Reactants | Activation Energy AH Products Reaction Progress | | | | | | | | | Thermodynamics | The study of the relationships and conversions between different forms of energy. 1st Law: Energy cannot be created or destroyed. It can only change form. 2nd Law: The entropy of the universe can never decrease. It must always stay the same or increase. | | | | | | | | | | | A measure of the amount of thermal energy in a system that is <u>not</u> available to do useful work. | | | | | |----------------------|--|--|--|--|--| | Entropy (ΔS) | | | | | | | | Because work is obtained from ordered molecular motion, entropy is | | | | | | | also a measure of the molecular <u>disorder</u> , or randomness, of a system. | | | | | | Change in Entropy | $\Delta S_{system} + \Delta S_{surroundings} \ge 0$ | | | | | | | The <u>solid</u> phase is the <u>lowest</u>-entropy phase. | | | | | | Entropy Observations | The gas phase is the <u>highest</u>-entropy phase. | | | | | | | The larger the number of molecules, the higher the entropy. | | | | | | | Chemical reaction: $aA + bB \rightarrow cC + dD$ | | | | | | Entropy Reactions | $\Delta S = \Delta S_{Products} - \Delta S_{Reactants}$ | | | | | | | $\Delta S = \left(c \cdot S^{\circ}(C) + d \cdot S^{\circ}(D)\right) - \left(a \cdot S^{\circ}(A) + b \cdot S^{\circ}(B)\right)$ | | | | | #### **Bond Energies** | Bond | Energy
(kJ/mole) | Bond | Energy
(kJ/mole) | Bond | Energy
(kJ/mole) | |-------|----------------------|-------|----------------------|--------------|----------------------| | H - H | 436 | C-C | 350 | F - F | 159 | | H-C | 410 | C-F | 450 | Cl-Cl | 243 | | H-O | 460 | C-Cl | 330 | S-H | 340 | | H-Cl | 432 | C-O | 350 | S-F | 310 | | H-N | 390 | C-N | 300 | O-Cl | 200 | | C = C | 611 | C = O | 732 | $N \equiv N$ | 945 | | N = O | 607 | O = O | 498 | $C \equiv O$ | 1072 | ## **Standard Enthalpies of Formation** | Compound | ΔH_f° (kJ/mole) | Compound | ΔH_f° (kJ/mole) | Compound | ΔH_f° (kJ/mole) | |--------------|---------------------------------|-------------------------|---------------------------------|--------------|---------------------------------| | $CH_4(g)$ | -74.9 | $C_2H_6O(l)$ | -277.7 | $H_2O_2(aq)$ | -191.2 | | $C_2H_6(g)$ | -84.7 | $CO_{2}\left(g ight)$ | -393.5 | HCl(g) | -92.3 | | $C_6H_6(g)$ | 82.6 | CO (g) | -110.5 | HCl (aq) | -167.2 | | $C_6H_6(l)$ | 49.0 | $CS_{2}\left(g\right)$ | 116.9 | $NH_3(g)$ | -45.9 | | $CH_4O(g)$ | -200.7 | $CS_{2}\left(l\right)$ | 89.7 | NH_3 (aq) | -80.3 | | $CH_4O(l)$ | -238.7 | $H_2O(g)$ | -241.8 | $NH_4Cl(s)$ | -314.6 | | $C_2H_6O(g)$ | -235.1 | $H_2O(l)$ | -285.8 | NaOH (s) | -425.9 | ## **Absolute Entropies** | Substance | S°
(J/mole·K) | Substance | S°
(J/mole·K) | Substance | S°
(J/mole∙K) | |-------------------|-------------------|-------------------------|-------------------|-------------------------|------------------| | $CH_4(g)$ | 186.1 | $C_2H_6O(l)$ | 160.7 | $H_2O_2(aq)$ | 143.9 | | $C_2H_6(g)$ | 229.5 | $CO_{2}\left(g ight)$ | 213.7 | HCl(g) | 186.8 | | $C_6H_6(g)$ | 269.2 | CO (g) | 197.5 | HCl (aq) | 56.5 | | $C_6H_6(l)$ | 173.4 | $CS_{2}\left(g\right)$ | 237.9 | $NH_3(g)$ | 192.7 | | $CH_4O(g)$ | 239.7 | $CS_{2}\left(l\right)$ | 153.1 | NH_3 (aq) | 111.3 | | $CH_4O(l)$ | 126.8 | $H_2O(g)$ | 188.7 | $NH_4Cl(s)$ | 94.9 | | $C_2H_6O(g)$ | 282.6 | $H_2O(l)$ | 70.0 | NaOH (s) | 64.4 | | C (graphite) | 5.7 | $H_{2}\left(g\right)$ | 130.6 | $Cl_{2}\left(g\right)$ | 223.0 | | $C\left(g ight)$ | 158.0 | $O_{2}\left(g ight)$ | 205.0 | $N_2(g)$ | 191.6 | # **Standard Gibbs Free Energy of Formation** | Compound | ΔG_f° (kJ/mole) | Compound | ΔG_f° (kJ/mole) | Compound | ΔG_f° (kJ/mole) | |--------------|-------------------------------|-------------------------|-------------------------------|--------------|-------------------------------| | $CH_4(g)$ | -50.8 | $C_2H_6O(l)$ | -174.9 | $H_2O_2(aq)$ | -134.1 | | $C_2H_6(g)$ | -32.9 | $CO_{2}\left(g ight)$ | -394.4 | HCl(g) | -95.3 | | $C_6H_6(g)$ | 129.7 | CO (g) | -137.2 | HCl (aq) | -131.3 | | $C_6H_6(l)$ | 124.4 | $CS_{2}\left(g\right)$ | 66.9 | $NH_3(g)$ | -16.4 | | $CH_4O(g)$ | -162.0 | $CS_{2}\left(l\right)$ | 65.3 | NH_3 (aq) | -26.6 | | $CH_4O(l)$ | -166.4 | $H_2O(g)$ | -228.6 | $NH_4Cl(s)$ | -203.1 | | $C_2H_6O(g)$ | -168.8 | $H_2O(l)$ | -237.1 | NaOH (s) | -379.7 | **Chapter 15: Kinetics** | Term | Equation | Note | |----------------------------|--|--| | Kinetics | The study of chemical react | ion rates. | | Rate | $Rate = rac{\Delta[C]}{\Delta t}$ $Rate = rac{-\Delta[A]}{\Delta t}$ | Chemical reaction: $A + B \rightarrow C + D$ reactants \rightarrow products $[] = \text{``The concentration of''}$ | | Reaction Rate Observations | The reaction rate is usually in the concentration of remaining the concentration of of | | | Rate Equation | $Rate = k[A]^x[B]^y$ | Chemical reaction: $aA + bB \rightarrow cC + dD$ rate constant orders with respect to each reactant rate = $k \times [A]^{\times} [B]^{y} [C]^{z}$ concentrations of reactants | | Rate Constant | the reaction. The rate constant in temperature. | te constant depend on the overall order of ncreases exponentially with increasing ecreases with increasing activation energy. | | Reaction rate. | 3.0x10 ³ - 2.5x10 | Reaction Rate (k) vs. Temperature | | | A chemical that increases the rate of a chemical reaction without being | | | | | | | |------------------------|---|--|--|--|--|--|--| | | used up in the process. | | | | | | | | | | | | | | | | | | i.e., It lowers the activation energy of the reaction by pulling the | | | | | | | | | molecules closer to one another than they would normally be. | | | | | | | | | A | | | | | | | | | | | | | | | | | | without enzyme | | | | | | | | Catalan | activation | | | | | | | | Catalyst | energy without | | | | | | | | | with enzyme activation | | | | | | | | | reactants overall energy overall energy | | | | | | | | | reactants e.g. CO ₂ + H ₂ O | | | | | | | | | reaction reaction | | | | | | | | | products | | | | | | | | | H ₂ CO ₃ | | | | | | | | | | | | | | | | | | Reaction coordinate | | | | | | | | | A common enzyme found in nearly all living organisms exposed to | | | | | | | | Catalase | oxygen which catalyzes the decomposition of H_2O_2 to H_2O and O_2 . | | | | | | | | | A catalyst in a phase that is <u>different</u> from that of the reactants. | | | | | | | | Heterogeneous Catalyst | e.g., Catalytic converter (g) + (s). | | | | | | | | | A device attached to the exhaust of a car that speeds up the following | | | | | | | | | reaction: | | | | | | | | | $2CO(g) + O_2(g) \rightarrow 2CO_2(\mathbf{g})$ | | | | | | | | | | | | | | | | | Catalytic Converter | The catalyst is the platinum-coated (solid) mesh that lowers the | | | | | | | | | activation energy. | | | | | | | | | Carbon Monoxide | | | | | | | | | (CO) Carbon Dioxide | | | | | | | | | Oxygen (CO_2) | ASSOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 000000000000000000000000000000000000000 | | | | | | | | | Catalyst Surface | | | | | | | | | 1 Adsorption 2 Reaction 3 Desorption | | | | | | | | | 1 Adsorption 2 Reaction 3 Desorption A catalyst in a phase that is the same as that of the reactants. | | | | | | | | Homogeneous Catalyst | $2O_3(g) \rightarrow 3O_2(g)$ | | | | | | | | | A detailed, step-by-step process that tells you exactly how a reaction | | | | | | | | | occurs. | | | | | | | | | $2O_3(g) \to 3O_2(g)$ | | | | | | | | Reaction Mechanism | Step 1: $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$ | | | | | | | | | Step 1: $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$
Step 2: $O_3(g) \rightarrow O_2(g) + O(g)$ due to UV light | | | | | | | | | Step 3: $NO_2(g) + O(g) \rightarrow NO(g) + O_2(g)$ | | | | | | | | | 1 4 407 - 407 - 407 - 407 | | | | | | | **Chapter 16: Chemical Equilibrium** | Term | Description | Equation | | |---------------------------|--|----------|--| | Chemical Equilibrium | The state that occurs in a chemical reaction when the rate of the | | | | Chemical Equilibrium | forward reaction equals the rate of the reverse reaction. | | | | Example | Reaction rate Reaction Reverse Reaction Att Annual | | | | Equilibrium Constant | $K = \frac{[C]_{eq}^{c} \ [D]_{eq}^{d}}{[A]_{eq}^{a} \ [B]_{eq}^{b}} \qquad \begin{array}{c} \text{Chemical reaction:} \\ aA + bB \rightarrow cC + dD \\ reactants \rightarrow products \\ \end{array}$ The value of the equilibrium constant for a given reaction changes with temperature. | | | | Interpreting the Constant | When the equilibrium constant is small, the reaction makes fewer products and has lots of reactants. The smaller it is, the more reactants there are and the fewer products there are at equilibrium. We see the equilibrium constant is 1, the reaction is balanced between reactants and products. When the equilibrium constant is large, the reaction makes lots of products and has few reactants. The larger it is, the more products there are and the fewer reactants there are at equilibrium. K = 1 Reactants Products Products | | | | | Do not include solid or lieu | id reastants or pro | lusts in the equation for | | |----------------------------------|---|---|--|--| | Focus on Gas | Do not include <u>solid</u> or <u>liquid</u> reactants or products in the equation for the equilibrium constant. | | | | | | $K = \frac{[C]_{eq}^{c} [D]_{eq}^{d}}{[A]_{eq}^{a} [B]_{eq}^{b}}$ | | | | | | For the above equation: | | | | | Interpreting K Results | >: If the result is <u>greater than</u> the equilibrium constant, the reaction will shift towards the reactants. If the result is greater than the equilibrium constant, the reactants. | | | | | | =: If the result is <u>equal</u> to the equilibrium constant, the
reaction is at equilibrium. | | | | | | <: If the result is <u>less than</u> the equilibrium constant, the | | | | | | reaction will shift towards the products. | | | | | Le Chatelier's Principle | When a system at equilibrium is stressed, it will shift in a way that relieves the stress and reestablishes equilibrium. | | | | | | Concentration | Pressure | Temperature | | | | Reactant
Concentration
Increases | Pressure
Increases | Temperature
Increases | | | | Product formation is favoured | Side with fewer
gas molecules
is favoured | Endothermic
reaction is
favoured | | | | $A + 2B \rightleftharpoons C + D$ | | | | | | Product
Concentration
Increases | Pressure
Decreases | Temperature
Decreases | | | | Reactant formation is favoured | Side with more
gas molecules
is favoured | Exothermic reaction is favoured | | | K Shifting: Concentration | A system in equilibrium will: 1: shift away from the side that experiences an increase in concentration. 1: shift towards the side that experiences a decrease in concentration. | | | | | K Shifting: Temperature | 1: When temperature is <u>raised</u>, an equilibrium will shift away from the side that contains energy. 1: When temperature is <u>lowered</u>, it will shift towards the side that contains energy. | | | | | K Shifting: Pressure | 1: When pressure is <u>raised</u> , an equilibrium will shift away from the side that has the most gas molecules. | | | | | | ↓: When pressure is <u>lowered</u>, it will shift towards the side that has the most gas molecules ↔: If there are <u>no gas</u> molecules, the equilibrium doesn't shift | | | | | | when pressure is changed. | | | | | Acid Ionization Constant (K_a) | The equilibrium constant for the reaction between an <u>acid</u> and water. | | | | | Base Ionization Constant (K_b) | The equilibrium constant f | or the reaction betw | veen a <u>base</u> and water. | | #### Sources These chapters and content are from the textbook: • Dr. Jay L. Wile (2015). <u>Discovering Design with Chemistry</u>, 1st Edition.