Harold's Math is Fun Cheat Sheet 1 September 2025 ## **Cool Graph Equations** | Description | Equation | Graph | |---------------------|--|-------| | Heart – Rectangular | $f(x) = x^{2/3} + 0.9 \sin(kx) \sqrt{3 - x^2}$ $k = 81.5$ | | | Heart – Polar | r $= 3.6 - \frac{\cos(2\theta) + 3\sin(\theta)}{0.8 + \cos(\theta) }$ $+ 1.5\cos(2\theta)$ | | | Heart – Parametric | $x(t) = 16(\sin t)^{3}$ $y(t) = 13\cos(t) - 5\cos(2t)$ $-2\cos(3t)$ $-\cos(4t)$ $0 \le t \le 2\pi$ | | | Persian Rug | sin(cos(tan(xy))) = sin(cos(tan(x))) + sin(cos(tan(y))) | | ### **Fun Math Quotes** | Description | Equation | Note | | |-----------------------|---|--|--| | Then a Miracle Occurs | "I THINK YOU SHOULS | MIRACLE POSITION TO THE OCCURS OCCURS OF THE | | | Math Teacher Signs | OF COURSE I HAVE DROPE EMS | ENGLISH IS IMPORTANT BUT BUT BY IS IMPORTANTER PARKING ONLY VIOLATORS WILL BE DIVIDED BY ZERO | | | Find x | $a^2 + b^2 = c^2$ | 3. Find x. A cm Here it is | | | 3 Types of People | "There are three types of people: those who can count and those who cannot." - Gene Wolfe | | | | Lottery Tax | "Lottery: A tax on people wl | ho are bad at math." | | | Carnivorous Integers | Q: Why was 6 afraid of 7? | | | | | | u are supposed to eat 3 squared meals a day. | | | Old MacDonald | | "Old Macdonald had a form, $e_i \wedge e_i = 0$." | | | Pierre de Fermat | Pierre de Fermat walks into a bar. "I have devised a most humorous punchline to this joke, but this margin is too narrow to contain it." | | | | Hiitchhiker | A kindergarten teacher asked students to introduce their parents. "My mom is a doctor. She saves lives!" "Wonderful!" "My dad drives for Uber. He takes people where they need to go!" "That's nice." "My dad kills hitchhikers and sells their valuables on eBay!" "Goodness gracious!" "Actually, I'm a mathematician, but how can you explain that to kids?" | | | | Breaking Bad Parody | "I took care of it. I divided by zero." Studio C two math teachers' parody of the TV series "Breaking Bad", where they were dealing in Math, not Meth. | | | #### **Beautiful Math** | Description | Equation | Note | | |--|---|-------------------------------------|--| | | What makes an equation beautiful? | | | | | Euler's identity is considered to be o | ne of the most beautiful equations | | | | $e^{i\pi}+$ | 1 = 0 | | | | Features five fundamental | mathematical constants | | | Euler's Identity | ≈ 2.71828 The base of natural logarithms logarithms the complex | ary unit of The ratio of a circle's | | | | The multiplicative identity | The additive identity | | | | Three basic arithm | netic operations | | | | Addition Multiplie | | | | Gamma Function:
Factorial of a Fraction | $\frac{1}{2}$!: | $=\frac{\sqrt{\pi}}{2}$ | | # **Deceptive Algebra Proofs** | Description | Equation | Note | |-------------|---|--| | 2 = 1 | $a = b$ $a^{2} = a \cdot b$ $a^{2} - b^{2} = a \cdot b - b^{2}$ $(a + b) (a - b) = b (a - b)$ $a + b = b$ $b + b = b$ $2b = b$ $2 = 1$ | Can you find the illegal operation? | | 2 + 2 = 5 | $0 = 0$ $20x - 20x = 25x - 25x$ $4x \cdot 5 - 4x \cdot 5 = 5x \cdot 5 - 5x \cdot 5$ $4x(5 - 5) = 5x(5 - 5)$ $4x = 5x$ $4 = 5$ $2 + 2 = 5$ $2 = 1 + 1$ | That darn zero again | | 2 = 0 | $2 = 1 + \sqrt{1}$ $2 = 1 + \sqrt{(-1)(-1)}$ $2 = 1 + \sqrt{(-1)} \cdot \sqrt{(-1)}$ $2 = 1 + i \cdot i$ $2 = 1 + i^{2}$ $2 = 1 - 1$ | Complex numbers | | 1 = -1 | $2 = 0$ $1 = 1$ $1 = \sqrt{1}$ $1 = \sqrt{(-1)^2}$ $1 = \sqrt{-1}\sqrt{-1}$ $1 = i^2$ $1 = -1$ | Imaginary numbers | | \$1 = 1¢ | \$1 = 100 cents
\$1 = (10 cents) ²
\$1 = (\$0.1) ²
\$1 = \$0.01
\$1 = 1¢ | Proof that \$1 = 1 cent | | $\pi = 3$ | $x = (\pi + 3)/2$ $2x = \pi + 3$ $2x(\pi - 3) = (\pi + 3)(\pi - 3)$ $2\pi x - 6x = \pi^2 - 9$ $9 - 6x = \pi^2 - 2\pi x$ $9 - 6x + x^2 = \pi^2 - 2\pi x + x^2$ $(3 - x)^2 = (\pi - x)^2$ $3 - x = \pi - x$ $\pi = 3$ | "And he made a molten <u>sea</u> , ten cubits from the one brim to the other: <i>it was</i> round all about, and his height <i>was</i> five cubits: and a line of thirty cubits did compass it round about.". - <u>1 Kings 7:23</u> | | | Г. | 1 | |-----------------------------|--|--| | Girls are Evil | Given: Girls = Time x Money Time = Money Money = $\sqrt{\text{Evil}}$ Proof: | Proof that girls are evil | | | Girls = $(Money)^2$
Girls = $(\sqrt{Evil})^2$
Girls = Evil | | | Dilbert's Salary
Theorem | Given: Knowledge is Power Time is Money Power = Work/Time Proof: Knowledge = Power Knowledge = Work/Time Knowledge = Work/Money Money = Work/Knowledge Work Money = lim Knowledge→0 Work Knowledge → ∞ | Proof relating to Knowledge, Power, and Money If Work is held constant as a positive number, Money approaches infinity (∞) as Knowledge approaches zero (0). | | | Conclusion: All else being equal, the less you know, the more money you make. | | | Halloween = Christmas | OCT 31 = DEC 25 Halloween = Christmas | Think of octal and decimal. | | Merry Christmas | $y = \frac{\ln\left(\frac{x}{m} - sa\right)}{r^2}$ $r^2 y = \ln\left(\frac{x}{m} - sa\right)$ $e^{r^2 y} = \frac{x}{m} - sa$ $me^{r^2 y} = x - sam$ $me^{rry} = x - mas$ | * y \(\frac{1}{2} \) = \(\frac{1}{2} \) = \(\frac{1}{2} \) \(\frac{1}{2} \) = \ | | Spreadsheets | $F = \left(\frac{\partial F_{+}}{\partial y}, \frac{\partial F_{-}}{\partial z}\right), \left(\frac{\partial F_{-}}{\partial z}, \frac{\partial F_{-}}{\partial z}\right),$ $\int_{X}^{x} dx = \frac{x^{4} + c}{5} Calculus$ $(x + 4)i + c = z^{2} Complex$ Calculus$ $ | | ## **Deceptive Geometry Proofs** #### **Math Puzzles** | Description | Equation | Note | |--------------------------------|--|--| | How many numbers can you see? | 8 8 8 8 8 8 | 8 | | Where did the other dollar go? | Three guys in a hotel call room service. The delivery boy brings them up with a Each guy gives him a \$10.00 bill, and he with the hands the \$30.00 to the cash been made. The bill was only \$25.00, not \$30.00. The cashier gives the delivery boy five them back to the 3 guys who ordered to the model of the hands to the service of them back to the service of | bill for exactly \$30.00. e leaves. ier, he is told that a mistake has \$1.00 bills and tells him to take the pizza. ivery boy has a thought these split \$5.00 evenly three ways mself and give them back three answers. and hands the guy the three dollars, his pocket. | ## **Marital Relationship Math** | Description | Equation | Note | |----------------------|--|--| | | Smart man + smart woman = romance | | | Romance | Smart man + dumb woman = affair | | | Romance | Dumb man + smart woman = marriage | | | | Dumb man + dumb woman = pregnancy | | | | Smart boss + smart employee = profit | | | Office | Smart boss + dumb employee = production | | | Office | Dumb boss + smart employee = promotion | | | | Dumb boss + dumb employee = overtime | | | Chamina | A man will pay \$2 for a \$1 item he needs. | | | Shopping | A woman will pay \$1 for a \$2 item t | hat she doesn't need. | | Future | A woman worries about the future until she gets a husband. A man never worries about the future until he gets a wife. | | | ruture | | | | Success | A successful man is one who makes more money than his wife can see A successful woman is one who can find such a man. | | | Success | | | | | To be happy with a man, you must understand him a lot and love him a | | | Happiness | little. | | | парршезз | To be happy with a woman, you must love her a lot and not try to | | | | understand her at all. | | | Longevity | Married men live longer than single men do, but married men are a lot | | | Longevity | more willing to die. | | | Propensity to Change | A woman marries a man expecting | he will change, but he doesn't. | | Propensity to change | A man marries a woman expecting | that she won't change, and she does. | | Discussions | A woman has the last word in any a | rgument. | | Discussions | Anything a man says after that is the beginning of a new argument. | | | | Old aunts used to come up to me at | t weddings, poking me in the ribs and | | You're Next | cackling, telling me, "You're next." | | | | They stopped after I started doing the same thing to them at funerals. | | | Conclusion | Show this list to a smart woman wh | o needs a laugh, and to the smart guys | | Conclusion | you know can handle it. | | #### Sources - Busch, Andrew (2025). Desmos Art! Geometry. https://www.andrewbusch.us/home/desmos-art-geometry - Jeon, Charles (April 24, 2011). Dilbert's Salary Theorem, University of Pennsylvania. https://www.scribd.com/document/317411126/Dilbert - OnlineMath Learning.com (2025). Funny Math Proofs. https://www.onlinemathlearning.com/funny-math-proofs.html - Quora (2020). What are some cool graph equations? https://www.quora.com/What-are-some-cool-graph-equations - Reddit.com (July 28, 2011). Batman Curve. https://mathworld.wolfram.com/BatmanCurve.html - Romance Mathematics. https://faculty.kfupm.edu.sa/COE/gutub/English Misc/math english.htm - Tiwari, A. K. (June 11, 2021). What makes an equation beautiful? A. K. Tiwari Physics Classes' post. https://www.facebook.com/abhijeetphysics/posts/in-this-post-i-will-discuss-about-one-of-the-most-beautiful-equation-of-mathemat/109163324729417/ - Wolfram World (2025). Heart Curve. https://mathworld.wolfram.com/HeartCurve.html