Harold's Modular Arithmetic Cheat Sheet

4 March 2025

Modular Arithmetic

Property	Condition (if)	Formula (then)	
Visualization	24-Hour Clock (mod 12) 11 12 1 10.23 24 13 2 9 21 15 3 8 20 16 4 7 6 5	(mod 26) 25 26 27 24 28 23 -2 -1 0 1 2 24 25 0 1 2 3 4 5 20 21 23 4 5 20 6 6 6 19 7 7 18 8 8 8 7 17 16 15 14 13 12 11 0 9	
Variables	m = modulus (+ int) r, n = residue or remainder (+ int)	a, b = integers q, k = quotient or multiples of (int)	
Modulus	$b = qm + r$ $b = km + n$ $a \equiv b \pmod{m}$	$b \bmod m \equiv r$ $b \bmod m \equiv n$ $a \bmod m \equiv b \bmod m$	
	b MOD m b DIV m	Integers r or n Integers q or k	
Congruence	$a \equiv b \pmod{m}$ $\frac{a-b}{m} = n$ $m \mid (a-b)$	$a \mod m = n$ $b \mod m = n$ $a \mod b$ have the same remainder when divided by m. n is an integer. $m \mod m = n$	
The congruence relation satisfies all the conditions of an equivalence relation:			
Reflexivity	$a \equiv a \ (mod \ m)$		
Symmetry	$b \equiv a \pmod{m}$ for all a, b, and n	$a \equiv b \; (mod \; m)$	
Transitivity	$a \equiv b \pmod{m}$ $b \equiv c \pmod{m}$	$a \equiv c \; (mod \; m)$	

Identities

Property	Condition (if)	Formula (then)	
Addition	a+b=c	$a \bmod m + b \bmod m \equiv c \bmod m$	
Computing	$[(a \bmod m) + (b \bmod m)] \bmod m = [a + b] \bmod m = c \bmod m$		
Translation	$a \equiv b \pmod{m}$	$a + k \equiv b + k \pmod{m}$ for any integer k	
Combining	$a \equiv b \pmod{m}$ $c \equiv d \pmod{m}$	$a+c \equiv b+d \pmod{m}$	
Subtraction	a-b=c	$a \bmod m - b \bmod m \equiv c \bmod m$	
Negation	$a \equiv b \pmod{m}$	$-a \equiv -b \pmod{m}$	
Multiplication	$a \cdot b = c$	$a \bmod m \cdot b \bmod m \equiv c \bmod m$	
Computing	$[(a \bmod m)(b \bmod m)] \bmod m$	$od\ m = [ab]\ mod\ m = c\ mod\ m$	
Scaling	$a \equiv b \pmod{m}$	$ka \equiv kb \pmod{m}$ $ka \equiv kb \pmod{km}$	
Combining	$a \equiv b \pmod{m}$ $c \equiv d \pmod{m}$	$ac \equiv bd \pmod{m}$	
Division	$gcd\ (k,m)=1$ (Meaning k and m are coprime) $ka=kb\ (mod\ m)$	$a \equiv b \pmod{m}$	
	$\frac{a}{e} = \frac{b}{e} \left(mod \ \frac{m}{gcd \ (m, e)} \right)$	where e is a positive integer that divides a and b	
	$a \equiv b \ (mod \ m)$	$a^k \equiv b^k \ (mod \ m)$	
Exponentiation	Example: Find the last digit of 17^{17} $17^{17} \pmod{10}$ $\equiv (7^2)^8 \cdot 7 \pmod{10}$ $\equiv (49)^8 \cdot 7 \pmod{10}$		
	$\equiv (9)^8 \cdot 7 \pmod{10}$ $\equiv (9^2)^4 \cdot 7 \pmod{10}$	The exponentiation property only works on the base.	
	$\equiv (81)^4 \cdot 7 \ (mod \ 10)$ $\equiv (1)^4 \cdot 7 \ (mod \ 10)$ $\equiv 7 \ (mod \ 10)$	For powers, use Euler's theorem.	
	Hence, the last digit of $17^{17} = 7$		
	$a \cdot a^{-1} \equiv 1 \pmod{m}$ $\gcd(a, m) = 1$ (a and m are relatively prime) $1 \leq a, a^{-1} \leq m + 1$ $m \geq 2$	a^{-1} is a multiplicative inverse of $a \mod m$	
Multiplicative	Example: Solve for x in $2x \equiv 3 \pmod{5}$		
Inverse mod n	To find the inverse first solve for r:		
	If $2 \cdot r \equiv 1 \pmod{5}$ then $r = 3$.		
	So, the multiplicative inverse of 2 is 3 with (mod 5).		
	Since $r = a^{-1}$ and $a^{-1}ax \equiv x \pmod{m}$, then $(2)(3)x \equiv 6x \equiv x \pmod{5}$.		
	p is prime $0 < a < p$	$a^{-1} \equiv a^{p-2} \ (mod \ p)$	

Theorems

Theorem	Condition (if)	Formula (then)	
	$gcd(x,y) = p_1^{\min\{\alpha_1,\beta_1\}} \cdot p_2^{\min\{\alpha_2,\beta_2\}} \cdot p_k^{\min\{\alpha_k,\beta_k\}}$		
Greatest Common Divisor (GCD)	Largest positive integer that is a factor of both x and y.		
Divisor (GCD)	Think Intersection (\cap) of α_i , β_i .		
GCD Theorem	x and y are positive integers where x < y	gcd(x, y) = gcd(y mod x, x)	
	if (y < x) Swap (x, y);		
	r = y mod x;		
	while ($r \neq 0$) {		
Euclid's Algorithm	y = x;	$gcd(x, y) = x_i$	
	x = r;		
	r = y mod x; }		
	return (x);		
	gcd(675, 210) = 15		
Example		y x r	
	675 210 45	30 (15) 0	
Extended Euclidean	Let x and y be integers, then there are		
Theorem	integers s and t such that	gcd(x, y) = sx + ty	
	r = y mod x		
	$r = y - (y \operatorname{div} x) \cdot x$		
	(!!)	Example:	
	$15 = 45 - (45 \text{ div } 30) \cdot 30$	gcd (675, 210) = 15	
	$15 = 45 - 1 \cdot 30$ Slide [y x r] window left		
Extended Euclidean	$30 = 210 - (210 \text{ div } 45) \cdot 45$	Do Euclid's Algorithm first, Saving	
Algorithm	30 = 210 · 4 · 45	intermediate results.	
	Slide [y x r] window left	Chart with aliding window on sight	
	45 = 675 - 3 · 210	Start with sliding window on right. << [y x r]	
	Back substitute green into red	675 210 45 30 15	
	gcd $(675, 210) = 15 = 5 \cdot 675 - 16 \cdot 210$		
	Output Format: gcd (x, y) = sx + ty where s and t are Bézout coefficients		
Multiplicative		s = x's inverse mod y	
Inverses	gcd(x, y) = sx + ty	t = y's inverse mod x	
	p is prime	$a^{p-1} \equiv 1 \pmod{p}$	
	a is an integer not divisible by p	$a^p \equiv a \pmod{p}$	
	Example: Find 7 ²²² mod 11		
Fermat's Little	Since $7^{10} \equiv 1 \pmod{11}$		
Theorem	and $(7^{10})^k \equiv 1 \pmod{11}$ $7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22 \cdot 7^2}$		
	$= (1)^{22} \cdot 49$		
	$= (1)^{-2} + 49$ $\equiv 5 \pmod{11}$		
	Hence, 7 ²²² mod 11 = 5		

	$c \equiv d \pmod{\varphi(n)}$	$a^c \equiv a^d \pmod{n}$	
Euler's Theorem	where ϕ is Euler's totient function	provided that a is coprime with n	
	where ϕ is Edier's totient runction	·	
	a and m are coprime	$a^{\varphi(n)} \equiv 1 \pmod{m}$	
	·	where φ is Euler's totient function	
Euler's Totient Function	$\phi(n)$ = number of integers $\leq n$ that do not share any common factors with n		
Wilson's Theorem	p is prime if and only if $(p-1)! \equiv -1 \pmod{p}$		
Linear Congruence	$ax \equiv b \pmod{m}$	Solutions are all integers x that satisfy the congruence	
		$x \equiv a_1 \pmod{m_1}$	
		$x \equiv a_2 \pmod{m_2}$	
Okt D t . d	m ₁ , m ₂ ,, m _n are pairwise relatively	$x \equiv a_n \pmod{m_n}$	
Chinese Remainder	prime positive integers > 1	has a unique solution modulo m =	
Theorem		$m_1m_2\cdots m_n$.	
	a ₁ , a ₂ ,, a _n are arbitrary integers	(Meaning 0 ≤ x < m and all other	
		solutions are congruent (≡)	
		modulo m to this solution.)	
	The congruence $f(x) \equiv 0 \pmod{p}$, where p is prime, and $f(x) = a_0 x^n + + a^n$ is		
Lagrange's Theorem	a polynomial with integer coefficients such that $a_0 \neq 0$ (mod p), has at most n		
Lugiunge 3 Theorem	roots.		
		f for every integer a conrime to m	
	A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that $g^k \equiv a \pmod{m}$.		
	there is an integer k such that g — a (mod m).		
	A primitive root modulo m exists if and only if n is equal to 2, 4, p^k , or $2p^k$, where p is an odd prime number and k is a positive integer.		
Primitive Root			
Modulo m			
If a primitive root modulo m exists, then there are exactly $\varphi(\varphi(m))$			
	primitive roots, where ϕ is the Euler's totient function.		

Sources:

- SNHU MAT 260 Cryptology, Invitation to Cryptology, 1st Edition, Thomas Barr, 2001.
- SNHU MAT 230 Discrete Mathematics, zyBooks.
- https://brilliant.org/wiki/modular-arithmetic/
- https://en.wikipedia.org/wiki/Modular_arithmetic
- https://artofproblemsolving.com/wiki/index.php/Modular_arithmetic/Introduction