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Cheat Sheet 
4 March 2025 

 
 
Modular Arithmetic 
 

Property Condition (if) Formula (then) 

Visualization 

24-Hour Clock (mod 12) 

 

(mod 26) 

 
Variables 

m = modulus (+ int) 
r, n = residue or remainder (+ int) 

a, b = integers 
q, k = quotient or multiples of (int) 

Modulus 

𝑏 = 𝑞𝑚 + 𝑟 𝑏 𝑚𝑜𝑑 𝑚 ≡ 𝑟 

𝑏 = 𝑘𝑚 + 𝑛 𝑏 𝑚𝑜𝑑 𝑚 ≡ 𝑛 

𝒂 ≡ 𝒃     (𝒎𝒐𝒅 𝒎) 𝒂 𝒎𝒐𝒅 𝒎 ≡ 𝒃 𝒎𝒐𝒅 𝒎 

b MOD m Integers r or n 

b DIV m Integers q or k 

Congruence 

≡ 
𝑎 ≡ 𝑏    (𝑚𝑜𝑑 𝑚) 

𝑎 𝑚𝑜𝑑 𝑚 = 𝑛 
𝑏 𝑚𝑜𝑑 𝑚 = 𝑛 

𝑎 − 𝑏

𝑚
= 𝑛 

m | (a - b) 

a and b have the same remainder when 
divided by m.  n is an integer. 

m divides a – b. 

The congruence relation satisfies all the conditions of an equivalence relation: 

Reflexivity 𝑎 ≡ 𝑎 (𝑚𝑜𝑑 𝑚)  

Symmetry 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) for all a, b, and n 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 

Transitivity 
𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 
𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) 

𝑎 ≡ 𝑐 (𝑚𝑜𝑑 𝑚) 

 
 
  

https://en.wikipedia.org/wiki/Equivalence_relation
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Identities 
 

Property Condition (if) Formula (then) 
Addition 𝑎 + 𝑏 = 𝑐 𝑎 𝑚𝑜𝑑 𝑚 + 𝑏 𝑚𝑜𝑑 𝑚 ≡ 𝑐 𝑚𝑜𝑑 𝑚 

        Computing [(𝑎 𝑚𝑜𝑑 𝑚) + (𝑏 𝑚𝑜𝑑 𝑚)] 𝑚𝑜𝑑 𝑚 = [𝑎 + 𝑏] 𝑚𝑜𝑑 𝑚 = 𝑐 𝑚𝑜𝑑 𝑚 

        Translation 𝑎 ≡ 𝑏      (𝑚𝑜𝑑 𝑚) 
𝑎 + 𝑘 ≡ 𝑏 + 𝑘     (𝑚𝑜𝑑 𝑚) 

for any integer k 

        Combining 
𝑎 ≡ 𝑏     (𝑚𝑜𝑑 𝑚)  
𝑐 ≡ 𝑑     (𝑚𝑜𝑑 𝑚) 

𝑎 + 𝑐 ≡ 𝑏 + 𝑑      (𝑚𝑜𝑑 𝑚) 

Subtraction 𝑎 − 𝑏 = 𝑐 𝑎 𝑚𝑜𝑑 𝑚 − 𝑏 𝑚𝑜𝑑 𝑚 ≡ 𝑐 𝑚𝑜𝑑 𝑚 
        Negation 𝑎 ≡ 𝑏     (𝑚𝑜𝑑 𝑚) −𝑎 ≡ −𝑏     (𝑚𝑜𝑑 𝑚) 

Multiplication 𝑎 ∙ 𝑏 = 𝑐 𝑎 𝑚𝑜𝑑 𝑚 ∙ 𝑏 𝑚𝑜𝑑 𝑚 ≡ 𝑐 𝑚𝑜𝑑 𝑚 

        Computing [(𝑎 𝑚𝑜𝑑 𝑚)(𝑏 𝑚𝑜𝑑 𝑚)] 𝑚𝑜𝑑 𝑚 = [𝑎𝑏] 𝑚𝑜𝑑 𝑚 = 𝑐 𝑚𝑜𝑑 𝑚 

        Scaling 𝑎 ≡ 𝑏     (𝑚𝑜𝑑 𝑚) 
𝑘𝑎 ≡ 𝑘𝑏     (𝑚𝑜𝑑 𝑚)   

𝑘𝑎 ≡ 𝑘𝑏     (𝑚𝑜𝑑 𝑘𝑚) 

        Combining 
𝑎 ≡ 𝑏     (𝑚𝑜𝑑 𝑚)  

𝑐 ≡ 𝑑     (𝑚𝑜𝑑 𝑚) 
𝑎𝑐 ≡ 𝑏𝑑     (𝑚𝑜𝑑 𝑚) 

Division 

𝑔𝑐𝑑  (𝑘, 𝑚) = 1  
(Meaning k and m are coprime) 

𝑘𝑎 = 𝑘𝑏     (𝑚𝑜𝑑 𝑚) 

𝑎 ≡ 𝑏     (𝑚𝑜𝑑 𝑚) 

𝑎

𝑒
=

𝑏

𝑒
 (𝑚𝑜𝑑 

𝑚

𝑔𝑐𝑑 (𝑚, 𝑒)
) 

where e is a positive integer that divides 
a and b 

Exponentiation 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 𝑎𝑘 ≡ 𝑏𝑘 (𝑚𝑜𝑑 𝑚) 

Example: Find the last digit of 1717 

1717 (𝑚𝑜𝑑 10) 

≡  (72)8 ∙ 7 (𝑚𝑜𝑑 10) 

≡ (49)8 ∙ 7 (𝑚𝑜𝑑 10) 

    ≡ (9)8 ∙ 7 (𝑚𝑜𝑑 10)   

≡ (92)4 ∙ 7 (𝑚𝑜𝑑 10) 

≡ (81)4 ∙ 7 (𝑚𝑜𝑑 10) 

≡ (1)4 ∙ 7 (𝑚𝑜𝑑 10)    

≡ 7 (𝑚𝑜𝑑 10)               

Hence, the last digit of 1717 = 7 

 

The exponentiation property only works 
on the base.  

 

For powers, use Euler's theorem. 

Multiplicative 
Inverse mod n 

𝒂 ∙ 𝒂−𝟏 ≡ 𝟏     (𝒎𝒐𝒅 𝒎) 

𝑔𝑐𝑑 (𝑎, 𝑚) = 1 
(a and m are relatively prime) 

1 ≤ 𝑎, 𝑎−1 ≤ 𝑚 + 1 
m ≥ 2 

𝑎−1 is a multiplicative inverse of a mod m 

Example:  Solve for x in 2x ≡ 3 (mod 5) 

To find the inverse first solve for r: 

If 2∙r ≡ 1 (mod 5) then r = 3. 

So, the multiplicative inverse of 2 is 3 with (mod 5). 

Since 𝑟 = 𝑎−1 and 𝑎−1𝑎𝑥 ≡ 𝑥 (𝑚𝑜𝑑 𝑚), then (2)(3)𝑥 ≡ 6𝑥 ≡ 𝑥 (𝑚𝑜𝑑 5). 

p is prime 

0 < 𝑎 < 𝑝 
𝑎−1 ≡ 𝑎𝑝−2 (𝑚𝑜𝑑 𝑝) 
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Theorems 
 

Theorem Condition (if) Formula (then) 

Greatest Common 
Divisor (GCD) 

𝑔𝑐𝑑(𝑥, 𝑦) = 𝑝1
𝑚𝑖𝑛{𝛼1,𝛽1}

· 𝑝2
𝑚𝑖𝑛{𝛼2,𝛽2}

· 𝑝𝑘
𝑚𝑖𝑛{𝛼𝑘,𝛽𝑘}

 
 

Largest positive integer that is a factor of both x and y. 

Think Intersection (∩) of 𝛼𝑖 , 𝛽𝑖. 

GCD Theorem x and y are positive integers where x < y gcd (x, y) = gcd (y mod x, x) 

Euclid’s Algorithm 

if ( y < x )  Swap (x, y); 
r = y mod x; 

while ( r ≠ 0 ) { 
      y = x; 
      x = r; 
      r = y mod x; 
} 
return (x); 

gcd (x, y) = xi 

Example 

 
Extended Euclidean 
Theorem 

Let x and y be integers, then there are 
integers s and t such that 

gcd (x, y) = sx + ty 

Extended Euclidean 
Algorithm 

r = y mod x 
r = y – (y div x) · x 
 
15 = 45 – (45 div 30) · 30 
15 = 45 – 1 ⋅ 30 
Slide [y x r] window left 
30 = 210 – (210 div 45) · 45 
30 = 210 - 4 ⋅ 45 
Slide [y x r] window left 
45 = 675 - 3 · 210 
Back substitute green into red 
gcd (675, 210) = 15 = 5 ⋅ 675 – 16 ⋅ 210 
Output Format: gcd (x, y) = sx + ty 
where s and t are Bézout coefficients 

Example: 
gcd (675, 210) = 15 
 
Do Euclid’s Algorithm first, Saving 
intermediate results. 
 
Start with sliding window on right. 
               <<  [y      x       r] 
675    210    45    30    15 

Multiplicative 
Inverses 

gcd (x, y) = sx + ty 
s = x’s inverse mod y 
t = y’s inverse mod x 

Fermat’s Little 
Theorem 

p is prime 
a is an integer not divisible by p 

𝑎𝑝−1 ≡ 1     (𝑚𝑜𝑑 𝑝) 
     𝑎𝑝 ≡ 𝑎     (𝑚𝑜𝑑 𝑝) 

Example:  Find 7222 mod 11 

Since 710 ≡ 1     (mod 11) 

and (710)k ≡ 1     (mod 11) 
7222 = 722•10+2 = (710)22 •72  

≡ (1)22 • 49  

≡ 5 (mod 11) 
Hence, 7222 mod 11 = 5 
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Euler’s Theorem 

c ≡ d (mod φ(n)) 
where φ is Euler's totient function 

ac ≡ ad (mod n) 
provided that a is coprime with n 

a and m are coprime 
aφ(n) ≡ 1 (mod m) 

where φ is Euler's totient function 

Euler’s Totient 
Function 

φ(n) = number of integers ≤ n that do not share any common factors with n 

Wilson’s Theorem p is prime if and only if (p − 1)! ≡ −1 (mod p) 

Linear Congruence 𝑎𝑥 ≡ 𝑏     (𝑚𝑜𝑑 𝑚) 
Solutions are all integers x that 
satisfy the congruence 

Chinese Remainder 
Theorem 

m1, m2, …, mn are pairwise relatively 
prime positive integers > 1 
 

a1, a2, …, an are arbitrary integers 

x ≡ a1 (mod m1) 
x ≡ a2 (mod m2) 
… 
x ≡ an (mod mn) 
has a unique solution modulo m = 
m1m2∙∙∙mn. 

(Meaning 0 ≤ x < m and all other 

solutions are congruent (≡) 
modulo m to this solution.) 

Lagrange's Theorem 

The congruence f (x) ≡ 0 (mod p), where p is prime, and f (x) = a0 xn + ... + an is 

a polynomial with integer coefficients such that a0 ≠ 0 (mod p), has at most n 
roots. 

Primitive Root 
Modulo m 

A number g is a primitive root modulo m if, for every integer a coprime to m, 

there is an integer k such that gk ≡ a (mod m).  

 

A primitive root modulo m exists if and only if n is equal to 2, 4, pk, or 2pk, 
where p is an odd prime number and k is a positive integer.  

 

If a primitive root modulo m exists, then there are exactly φ(φ(m)) such 
primitive roots, where φ is the Euler's totient function. 
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