Harold's Probability Cheat Sheet

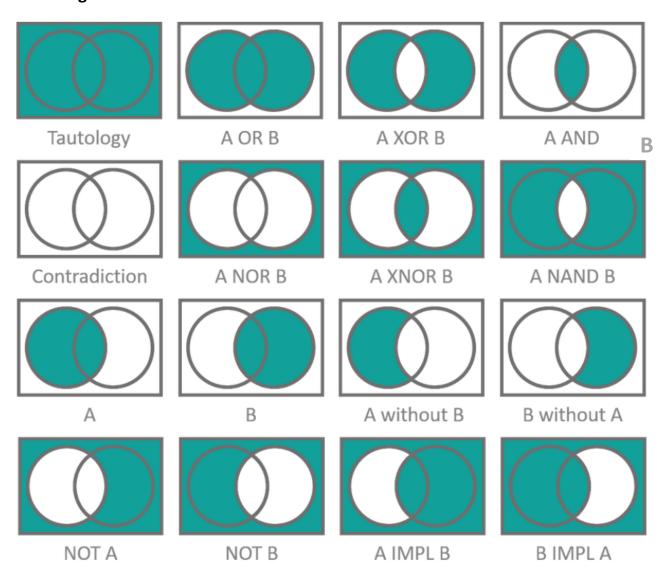
11 December 2024

Probability

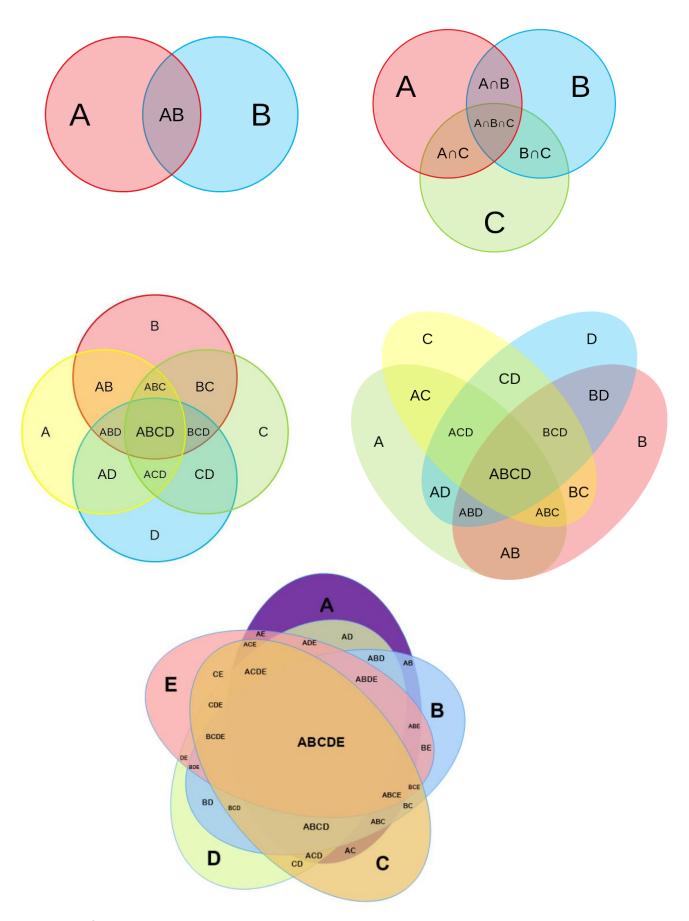
Rule	Formula	Definition
	\cap = "and", Intersection, " \wedge "	"and" implies multiplication.
Notation	U = "or", Union, "V"	"or" implies addition.
	_ = "not", negation, "¬"	"not" implies negation.
		The occurrence of one event does not
Independent	If $P(A B) = P(A)$	affect the probability of the other, or vice
		versa.
Dependent	If $P(A \cap B) \neq \emptyset$	The occurrence of one event affects the
	, ,	probability of the other event.
Disjoint	$IfP(A\cap B)=\emptyset$	The events can never occur together.
("mutually exclusive")	Then $P(A \cup B) = P(A) + P(B)$	The events can hevel book together.
Drobobility	$0 \le P(E) \le 1$	
Probability ("likelihood")	p(E) = #Events(E)	# of Favorable Outcomes Total # of Possible Outcomes
(likelillood)	$\frac{F(E) - Sample Space(S)}{S}$	Total # of Possible Outcomes
Addition Rule	$\mathbf{D}(A + \mathbf{D}) = \mathbf{D}(A) + \mathbf{D}(B) - \mathbf{D}(A \cap B)$	
("or")	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	if independent or disjoint:	3
	$P(A \cap B) = P(A) P(B)$	AB
	$P(A \cap B \cap C) = P(A) P(B) P(C)$	
Multiplication Rule		(AnB
("and")	if dependent:	
	$P(A \cap B) = P(A) P(B A)$	
	$P(A \cap B) = P(B) P(A B)$	
	$P(A \cap B) = P(A) - P(A \cap \overline{B})$	
	$P(S) = P(A \cup \overline{A}) =$	
	$P(A) + P(\overline{A}) = 1$	
Complement Rule /	_	The complement of event A (denoted
Subtraction Rule	$P(A) = 1 - P(\overline{A})$	$\overline{A} \ or \ A^c$) means " not A "; it consists of all
("not")	$P(\overline{A}) = 1 - P(A)$	simple outcomes that are not in A.
	$P(A B) + P(\overline{A} B) = 1$	
	$P(A B) = \frac{P(A \cap B)}{P(B)}$	Means the probability of event A given that
Conditional	P(B)	event B occurred. Is a rephrasing of the
Probability		Multiplication Rule. P(A B) is the
("given that")	if independent or disjoint:	proportion of elements in B that are ALSO
	P(A B) = P(A)	in A.
	P(B A) = P(B)	

	$D(A)$ $D(A \circ D) + D(A \circ D)$	
	$P(A) = P(A \cap B_1) + \dots + P(A \cap B_n)$	
Total Probability Rule	$= P(B_1) P(A B_1) + \cdots$	To find the probability of event A, partition
	$+P(B_n)P(A B_n)$	the sample space into several disjoint
		events. A must occur along with one and
	$P(A) = P(A \cap B) + P(A \cap \overline{B})$	only one of the disjoint events.
	$= P(B) P(A B) + P(\overline{B}) P(A \overline{B})$	
Bayes' Theorem	$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) P(B A)}{P(B)}$	Aller of D(ALB) to be easily later than D(BLA)
	$P(A B) = \frac{P(B)}{P(B)} = \frac{P(B)}{P(B)}$	Allows P(A B) to be calculated from P(B A).
		Meaning it allows us to reverse the order of
	P(A) P(B A)	a conditional probability statement, and is
	<u> </u>	the only generally valid method!
	$P(A) P(B A) + P(\overline{A}) P(B \overline{A})$	
	$\overline{P(A \cup B)} \equiv \overline{P(A)} \cap \overline{P(B)}$	Uses negation to convert an "or" to an
De Morgan's Law	$F(A \cup B) = F(A) \cap F(B)$	"and".
	$\overline{P(A \circ P)} = \overline{P(A)} \cup \overline{P(P)}$	Uses negation to convert an "and" to an
	$P(A \cap B) \equiv \overline{P(A)} \cup \overline{P(B)}$	"or".

Venn Diagrams



Copyright © 2016-2024 by Harold Toomey, WyzAnt Tutor



Copyright © 2016-2024 by Harold Toomey, WyzAnt Tutor

Sources:

- <u>SNHU MAT 229</u> Mathematical Proof and Problem Solving, <u>How To Prove It A Structured</u>
 <u>Approach</u>, 3rd Edition Daniel J. Vellman, Cambridge University Press, 2019.
- <u>SNHU MAT 230</u> Discrete Mathematics, zyBooks.
- Learn more about probability distributions
 here: http://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/